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Abstract. Reservoir Computing (RC) offers a computationally efficient
and well performing technique for using the temporal processing power of
Recurrent Neural Networks (RNNs), while avoiding the traditional long
training times and stability problems. The method is both simple and
elegant: a random RNN (called the reservoir) is constructed using only
a few global parameters to tune the dynamics into a desirable regime,
and the dynamic response of the reservoir is used to train a simple lin-
ear regression function called the readout function - the reservoir itself
remains untrained. This technique has shown some experimentally very
convincing results on a variety of tasks, but a thorough understanding
of the importance of the dynamics for the performance is still lacking.
This contribution aims to extend this understanding, by presenting a
more sophisticated extension on the traditional way of characterizing the
reservoir dynamics, by using the dynamic profile of the Jacobian of the
reservoir instead of static, a priori measures such as the standard spec-
tral radius. We show that this measure gives a more accurate description
of the reservoir dynamics, and can serve as predictor for the performance.
Additionally, due to the theoretical background from dynamical systems
theory, this measure offers some insight into the underlying mechanisms
of RC.

1 Introduction: Reservoir Computing

Reservoir Computing (RC) [15], an idea that was originally independently intro-
duced as Echo State Networks (ESN) [5] and Liquid State Machines (LSM) [7]
has grown in the last few years into a research subfield that has attracted quite
some attention. This is likely due to the attractive properties of the method: it
can be used to solve temporal learning tasks without extensive parameter tuning
or long training times and is easy to use and understand.

Reservoir Computing relies on the dynamic response of an excitable, (usually)
nonlinear medium - the reservoir - to a one- or multidimensional input signal.
The state of the system - which is in effect a nonlinear transformation with fading
memory of the input - is then used as input for a linear regression function, which
can be trained using any of the available online or offline training methods for
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Fig. 1. Schematic view of an RC system, with the input signals (left) driving the
reservoir, which is then used as input for the linear readout that in turn extracts the
output

linear classifiers or regressors (see Fig. 1). In a sense, the functionality of the
reservoir can be interpreted as being a random, temporal and nonlinear kernel
[11], which performs a temporal-to-spatial transformation. This transformation
boosts the computational capabilities of the subsequent linear classifier, enabling
it to solve problems it would not be able to without the reservoir. Thus, in
RC, two difficult tasks needed for solving temporal classification or regression
problems are elegantly separated, namely the nonlinear dynamic preprocessing,
and the training of the actual classifier.

In practice, the methodology to construct and train an ESN system can be
summarized as follows:

– Construct a recurrent neural network consisting ofN nodeswith sigmoid (tanh)
nonlinearities. The weights of the N ×N reservoir weight matrix Wres and an
M ×N input weight matrix Win are drawn from a random distribution (e.g. a
gaussian distribution), or a from discrete set. Rescale Wres globally, such that
the spectral radius of Wres is set to the desired value. The spectral radius of a
matrix is its largest absolute eigenvalue, and denoted as ρ(Wres). The ratio-
nale behind the rescaling is explained later. Rescale Win with a constant value,
the input scale factor (usually around 1).

– Simulate the network by driving it with an external (possibly multidimen-
sional) input signal u[k]. The network state at time k is denoted as s[k].
The network is simulated recursively, in a timestep based way, as follows:
s[k + 1] = f(Wress[k] + Winu[k]).

– Compute the output weights by least squares regression on the matrix A -
which is a concatenation of all vectors s[k] - using the desired output matrix
o as the right-hand side. I.e., compute the matrix Wout that satisfies the
following equation: Wout = minW ‖AW−o‖2

.In practice, this can be done
in a single step by using the Moore-Penrose generalized matrix inverse [10], or
pseudo-inverse A† of the matrix A, which is defined as : A† = (ATA)−1AT,
as follows: Wout = A†o = (ATA)−1ATo.
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– Simulate the network on the test set in the same way as above, and compute
the output as follows: ô[k] = Wouts[k].

– Evaluate the performance based on the difference between the RC output
ô[k] and the target output o[k].

While RC as a research area is rooted in neural network research and is still
mainly active there, its ideas are extendable to other fields. The basic idea of
using a nonlinear dynamic system to act as a complex preprocessing filter for the
linear readout is very powerful, and can be ported to other research areas. More
exotic incarnations of RC have already been described in literature, which include
(ranked in order of ‘deviation from the standard RNN’) : bandpass reservoirs
[12,18], Cellular Nonlinear Network (CNN) reservoirs [16] and a reservoir built
from coupled nano-photonic nonlinear components [13].

2 Disadvantages of Static Reservoir Measures

As was mentioned in the brief description of the ESN methodology, the spectral
radius is an important parameter that controls the dynamic regime of the reser-
voir. It amounts to a global scaling of the eigenvalues of the connection matrix.
From a system theoretic point of view, this can be interpreted as follows: for
a small-signal approximation (i.e. the state of the reservoir remains near the
zero fix-point), the reservoir can be approximated as a linear time-invariant,
discrete-time system:

x[k + 1] = Ax[k] + Bu[k]
y[k + 1] = Cx[k + 1] + Du[k + 1]

where x[k] represents the state of the reservoir (the vector of neuron activations)
at time k, and u[k] and y[k] represent the input and output to the system, respec-
tively. The matrix A contains the internal weights of the reservoir (Wres from
above), the B matrix contains the input-to-reservoir weights (Win from above),
and C and D contain the (trained) reservoir-to-output (Wout from above) and
input-to-output weights respectively (the latter is usually left zero).

It follows from linear system theory [2] that if the matrix A has all singular
values smaller than 11, it is definitely stable, while if any absolute eigenvalue
(i.e. spectral radius) is larger than 1, the system (i.e. the reservoir) will surely
be unstable in the sense that it will deviate unboundedly from the fixed point
when started from a non-zero state. However, the reservoirs of the ESN type
(and the reservoirs that we will consider in this contribution), have a squashing
tanh() nonlinearity, that counteracts this unbounded growth - which means that
the norm of the state vector of the reservoir will always remain bounded. This
nonlinearity also means that the spectral radius as a stability measure looses its
significance when the system deviates from an ε-region around the zero state.
1 This implies that the maximal gain in any direction in state space is smaller than

one, and the system is always contracting.
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Fig. 2. The gain of the sigmoid nonlinearity is largest around the origin (white circle).
Once the neuron is driven by an external signal or a constant bias, the working point
shifts up or downward (gray circle) and the local gain decreases, resulting in a less
dynamically excitable reservoir.

This means that it is possible that reservoirs with a spectral radius larger than
one do possess the echo state property when driven by an external input - this
was e.g. proven experimentally in [14]. Once the system is driven by an external
input or if a constant bias is fed to the nodes, the operating point of all neurons
shifts along the nonlinearity and the effective local gain (i.e. the slope of the
tangent in the operating point) becomes smaller (see Fig. 2).

In [5], the linear approximation described above is used to derive some mathe-
matically founded guidelines for constructing weight matrices for suitable reser-
voirs. The suitability of a reservoir in this case is mainly identified through the
presence of the so-called echo state property, which roughly states that the state
of the reservoir is only determined by the inputs from a sufficiently long time in
the past, and that the initial state of the reservoir eventually gets washed out.
Several bounds for this property have been described in literature:

– A reservoir whose weight matrix Wres has a largest singular value (LSV)
(denoted as σ(Wres)) smaller than one, is guaranteed to have the echo state
property. However, in practice this guideline is of little use since these reser-
voirs are not dynamically rich enough to perform well.

– A reservoir whose weight matrix has a spectral radius (SR) - i.e. a largest
absolute eigenvalue - larger than one is guaranteed not to have the echo
state property. So, ρ(Wres) ≤ 1 is a necessary condition for the echo state
property. While the spectral radius criterium is not a sufficient condition, in
practice it is used as a guideline for constructing good reservoirs for many
problems.

– In [1], a tighter bound on the echo state property than σ(Wres) < 1 was
presented. A Euclidean weighted matrix norm ‖W‖D =

∥
∥DWD−1

∥
∥

2
=

σ(DWD−1) was introduced, and it turns out that for a certain class of
structured weighting matrices Dδ, the relation ρ(W) < infDδ

∥
∥DδWD−1

δ

∥
∥ <

σ(W) holds. The center term infDδ

∥
∥DδWD−1

δ

∥
∥ is called the structured

singular value μSSV , a quantity widely used in robust control theory. It turns
out that μSSV offers a bound on the echo state property (namely, μSSV < 1)
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that is less conservative than the standard σ(Wres) < 1. However, while this
new bound is an improvement over the standard LSV and SR bounds, it is
computationally quite demanding to evaluate (21 seconds for a reservoir of
500 nodes, versus .6 seconds to compute the spectral radius).

All the quantities described above are static measures that only take the internal
reservoir weight matrix into account and disregard other factors such as input
scaling, bias or dynamic range of the input signals - factors that are equally
important in defining the dynamic properties of the system. Clearly, an accurate
way of quantifying the dynamics of the reservoir, evaluated in the current work-
ing point of the reservoir, would be very useful. This notion is explored further
in the next section.

3 Quantifying Dynamic Properties of Reservoirs

The readout of the RC system is quite unsophisticated in terms of computa-
tional power: it is both linear and memoryless. While these properties enable
the application of easy and optimal training algorithms, this also means that
complex temporal problems cannot be solved by the linear readout alone. Thus,
the functionality of the reservoir is twofold: it should perform a suitably nonlin-
ear transformation of the input so that the discriminating power of the linear
readout gets boosted, and it should also offer a fading memory of past inputs
to the readout. In some ways, these two functions are contrary to each other:
it was shown theoretically that linear networks and even long delay lines have
the largest memory of past inputs [4,17,3], but many non-trivial tasks require at
least some form of nonlinear behaviour, which reduces the memory of the net-
work. Thus, a good reservoir should ideally find the optimal trade-off between
these two opposing goals. This is closely linked to the dynamic regime of the
reservoir.

The dynamic properties of the reservoir at a given point in time are determined
by a couple of factors: the reservoir weight matrix (this was discussed in the
previous section), an optional bias, the nonlinearity of the nodes and the external
input that drives the reservoir. These factors determine the operating regime of
the reservoir, and as such the local gain of the system at any given time. Here,
we will discuss two (related) tools for quantifying these dynamic properties,
namely the local Lyapunov exponent (LLE) and the Jacobian of the reservoir.
The Jacobian Jf of a map f(s) is given by:

Jf (s) =

(
∂f1
∂s1

(s) · · · ∂f1
∂sn

(s)
∂fn

∂s1
(s) · · · ∂fn

∂sn
(s)

)

,

where s = [s1s2 . . . sn] is the vector of activation values of the neurons in the
reservoir, and f is the nonlinearity of the nodes - in this case a tanh(). The
matrix contains the local derivative of every state value w.r.t. every other state
value. In the case of a tanh() reservoir, this simplifies to:

Jf (s) = diag[1 − s2
1[k], 1 − s2

2[k], . . . , 1 − s2
n[k]]Wres,
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where the notation diag[] signifies a diagonal matrix with the given values on the
diagonal, and W is the weight matrix of the reservoir. From this, the kth LLE
λ̃k can then be approximated as: λ̃k = log

(
∏N

n=1(rk)1/n
)

with N the number
of timesteps in the trajectory that is considered, and rk the kth eigenvalue of
Jf . The LLE offers a local estimation of the predictability or excitability of a
dynamic system around a certain point in state space. It is only an approximation
of the true Lyapunov spectrum for two reasons: first of all, we only consider a
finite trajectory while the definition of the Lyapunov exponent requires that N →
∞, and secondly the system under consideration is driven by an external input
signal. However, we argue that this spectrum can still offer a valid quantification
of the local dynamic properties of the reservoir.

In [15], the relationship between the mean of the maximum of the local Lya-
punov spectrum and the performance of the reservoir was studied, and it was
found that for a given task, the optimal performance of a reservoir was consis-
tently attained for the same value of the maximal LLE. While this finding was
useful from a theoretical point of view because it offered a more refined mea-
sure of the reservoir dynamics that the stationary measures mentioned in the
previous section, it does not supply a practical means for choosing the reservoir
dynamics or offers insight into the meaning of this metric.

Closer inspection of the complete local Lyapunov spectrum reveals another,
and in some ways more useful phenomenon. Figure 3 shows a plot of the mean
over time of all LLEs as the spectral radius of the reservoir is varied from .1 to
3 and the reservoir is driven by noise (which is the input for the NARMA task,
see below). The plot shows that the maximal exponent increases monotonically
(as was shown previously in [15]), but also that the minimal exponent reaches a
maximum for a spectral radius of 1, and then decreases again. Thus, the bundle
of LLEs becomes narrower and then broader again as the spectral radius of the
reservoir weight matrix is increased. More importantly, the maximum of the
minimal lyapunov exponent is a good predictor for the optimal performance of
the system. In the next section, we will present some more elaborate experimental
results and discuss the implications of this phenomenon.
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Fig. 3. The full mean (over time) local lyapunov spectrum for a reservoir of 100 nodes
for the NARMA task
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4 Experiments and Discussion

The maximal LE is - for autonomous systems - an indicator of chaotic behaviour:
if it is larger than zero the system is said to be chaotic, meaning that perturba-
tions from a trajectory are amplified exponentially in at least one direction. At
first sight no such interpretation exists for the minimal LE - it simply quantifies
the direction of minimal expansion of the system. However, closer inspection
reveals that a more informative interpretation is possible by inspecting the Ja-
cobian matrix itself.

We start with the following remark: when evaluating the Jacobian around the
origin in state space (zero fixpoint, i.e. s = 0), it reduces to the weight matrix W
of the reservoir, and its largest eigenvalue is precisely the spectral radius of the
reservoir. Therefore, the eigenvalue spectrum of the Jacobian can be seen as a
dynamic extension of the static eigenvalue spectrum of the weight matrix (which
was the subject of previous work on dynamics in reservoirs, e.g. [9]). Moreover,
the lyapunov spectrum at a single point in time, given by log(eig(JT

f Jf )), is equal
to the log of the singular value spectrum of the Jacobian itself2 . Following this
line of reasoning, we measured the minimal singular value (SV) of the Jacobian 3

and computed its mean over time as we vary the spectral radius of the reservoir
weight matrix, and the scaling factor of the input matrix. We then compared
this measure with the performance on two tasks:

– The Mackey-Glass timeseries prediction. This mildly chaotic timeseries (with
delay parameter τ = 17) is a common benchmark and RC systems have
shown very good performance on this task [6]. The RC system was trained
to do one-step ahead prediction on a training timeseries of 4000 timesteps,
and was then used to autonomously generate the signal by feeding its own
prediction back as input into the reservoir. The performance is evaluated
as the first timestep when the divergence (expressed as the absolute error)
between the predicted and target signal exceeds 0.1.

– Modelling a 30th order Nonlinear AutoRegressive Moving Average (NARMA)
system. Here, the input u[k] to the network is a random signal sampled
from a uniform distribution in [0, .5], and the target output is given by
y[k+1] = 0.2y[k]+0.04y[k](

∑29
i=0 y[k−i])+1.5u[k−29]u[k]+0.001. The per-

formance is measured with the normalized root mean square error (NRMSE).

Figure 4 shows the mean maximal LLE, the mean minimal singular value of the
Jacobian, and the score on both tasks, as the spectral radius and scaling factor
of the input matrix are swept within the plausible range [.1, 2] with steps of .1
(every point in the plots represents the average over twenty different reservoir
instantiations). The top plots show the same measure that was introduced in [15].
This measure clearly does not capture all necessary dynamic properties of the
2 In general, for a matrix M, the squares of its singular values are equal to the eigen-

values of MT M.
3 At every 50th timestep for computational reasons, but this provides sufficient accu-

racy.
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Fig. 4. The top plots show the maximal LLE, the middle plots show the minimal SV
and the bottom plots show the performance for the Mackey-Glass prediction (left)
and NARMA (right) task. Note that for the Mackey-Glass performance plot, higher is
better while for NARMA lower is better.

reservoir, since it increases monotonically with the spectral radius, and the input
scaling has hardly any influence. The middle plots on the other hand - which
show the minimal SV σm - offer a much more nuanced image. The minimal SV
σm varies with both the spectral radius and the input scaling - which indicates
that it captures the changing dynamical properties of the reservoir as a function
of the scaling parameters quite well. Moreover, the area of optimal performance
(bottom plots) coincides quite nicely with the areas where σm is highest. Thus,
σm is a more accurate predictor of performance than both the largest LLE and
the spectral radius.

The interpretation of σm of the Jacobian is at first sight not trivial: it simply
qualifies the minimal gain of the system in any direction in state space. However,
σm can be written as the ratio between the norm ‖Jf‖ and the condition number
κ(Jf ) of the Jacobian:σm = ‖Jf‖2

κ(Jf ) , since σ−1
m =

∥
∥
∥J−1

f

∥
∥
∥ and κ(Jf ) =

∥
∥
∥J−1

f

∥
∥
∥ ‖Jf‖

and where ‖·‖2 denotes the l2 norm.
This relation yields an interesting interpretation. In the field of robotics (which

borrows substantially from dynamical system theory), both the condition num-
ber and the norm of the Jacobian are widely used measures for quantifying the
dynamic behaviour of e.g. robotic manipulators [8]. In particular, the norm of
the Jacobian is a measure of the maximal gain of the system in any direction,
while the condition number is used to quantify the dexterity of the robot arm or
the closeness to a singular position (where the robot looses one or more degrees
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of freedom due to constraints on the joints) - large condition numbers are an in-
dication of low dexterity. When we transpose this interpretation to the reservoir,
we can see that the maximization of σm is in fact a joint optimization of:

– the maximal gain of the system, thus ensuring good excitability and separa-
tion of the input signals in state space, and

– minimization of the condition number, which means that the dynamical sys-
tem is far from singularity and has many degrees of freedom.

These two quantities are in opposition: if the gain of the reservoir is too high,
the nodes will start to saturate and the expressive power of the nonlinearity
decreases, which means that the reservoir is constrained to a lower-dimensional
subspace of the state space. If it is too low, the reservoir does not separate the
input signals enough. This trade-off is clearly present in the measure presented
here.

One disadvantage of this measure is that it does not apply to linear reservoirs
- a maximization of the minimal SV of the jacobian (which is then just the
reservoir weight matrix) results in unbounded weights.

5 Conclusions

While RC often achieves impressive performance on many tasks, the tuning of
the parameters that control the dynamics of the reservoir is still a matter of
expertise and manual experimentation, which is partly due to a lack of measures
for accurately quantifying the dynamics of the reservoir. We have presented
a novel metric for measuring the dynamical properties of the reservoir, and
have shown that it is a more accurate predictor of performance than previously
published measures. Moreover, we have given an interpretation of the measure
that offers more insight into the functionality of the reservoir, showing that a
trade-off is made between the excitability of the reservoir and its ‘degrees of
freedom’ in state space.

Reservoir Computing has originated in the field of neural networks, but has
since been extended to other, more generic implementations. For these more
exotic reservoirs (such as reservoirs built from nano-photonic components [13])
especially, the standard tuning parameters such as spectral radius become mean-
ingless. The measure introduced in this contribution can fill this void and offers
a useful method for tuning and quantifying the dynamics of these novel reservoir
implementations.
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