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Scalable reservoir computing on coherent linear
photonic processor
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Photonic neuromorphic computing is of particular interest due to its significant potential for

ultrahigh computing speed and energy efficiency. The advantage of photonic computing

hardware lies in its ultrawide bandwidth and parallel processing utilizing inherent paralle-

lism. Here, we demonstrate a scalable on-chip photonic implementation of a simplified

recurrent neural network, called a reservoir computer, using an integrated coherent linear

photonic processor. In contrast to previous approaches, both the input and recurrent

weights are encoded in the spatiotemporal domain by photonic linear processing, which

enables scalable and ultrafast computing beyond the input electrical bandwidth. As the

device can process multiple wavelength inputs over the telecom C-band simultaneously, we

can use ultrawide optical bandwidth (~5 terahertz) as a computational resource. Experi-

ments for the standard benchmarks showed good performance for chaotic time-series

forecasting and image classification. The device is considered to be able to perform 21.12

tera multiplication–accumulation operations per second (MAC ∙ s−1) for each wavelength

and can reach petascale computation speed on a single photonic chip by using wavelength

division multiplexing. Our results are challenging for conventional Turing–von Neumann

machines, and they confirm the great potential of photonic neuromorphic processing

towards peta-scale neuromorphic super-computing on a photonic chip.
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Nowadays, machine learning techniques are advancing at a
tremendous speed1, and their applications for artificial
intelligence (AI) systems are penetrating society. This is

motivating the development of special-purpose AI hardware such
as application-specific integrated circuits (ASICs) and field-
programmable gate arrays (FPGAs)2,3, which provide much faster
and more energy-efficient computational resources. Recently,
photonic implementations of artificial neural networks (ANNs)
are attracting interest because they have great potential to reduce
operational power, increase speed, and reduce latency beyond
what is possible in electronic computing4–21. Optical circuits can
perform a large-scale multiply-accumulate (MAC) operation—a
dominant factor in ANN computation—with ultrahigh proces-
sing speed thanks to their ultrawide bandwidth (terahertz region)
and inherent parallelism in space, time, phase, and wavelength
domains. As this operation is executed simply by light propaga-
tion and interference, the principal energy consumption is very
small. Although the basic operation of this alternative computa-
tion was originally proposed in the early 1970s22–24, the research
was suspended due to the rapid development of electronic large-
scale-integration (LSI) technology and an AI winter. The revival
of AI through deep learning technology has led to a rethinking of
neuromorphic photonic systems. Recent progress in photonic
integrated circuits25, which were developed for telecom applica-
tions, enables us to implement photonic ANN compactly4. This
will boost the research of photonic ANN for alternative compu-
tational devices.

Coherent linear photonic processors4,26,27 are key engines for
implementing such a computation system on compact optical
chips. These processors are composed of an array of
Mach–Zehnder interferometers (MZIs), which enables various
types of optical topologies. As pioneered by Shen et al.,4 it is
possible to map the mathematical description of a neural network
onto a photonic chip with external nonlinear devices. Up to now,
photonic circuits have been reported for various ANN models,
such as fully connected multilayer perceptrons4–6, spiking neural
networks7, convolutional neural networks8, and recurrent neural
networks, including reservoir computing (RC)9–21.

Among them, RC28–30 is gaining attention for its affinity with
optical elements and its excellent performance. The standard deep
neural network (DNN) requires fine tuning of each weight
through the use of the error back propagation algorithm31, which
in turn requires highly accurate and uniform large-scale inte-
gration of tunable optical elements, which is a very challenging
issue for fabrication. In addition, the training time of a photonic
ANN is generally much longer than that with electrical devices
due to the slow response of the phase shifters in the MZIs (on the
order of milliseconds for thermo-optic devices). Therefore,
standard photonic ANNs are effective only at the inference stage.
On the other hand, in the RC framework, only output weights are
trained, which is carried out by using a linear regression scheme.
The other weights are fixed randomly. Thus, there is no need for
any fine tuning of the optical system under training. As the
training time is determined by forward propagation in RC, it can
be accelerated by using photonics. In spite of the simple training,
DNNs based on photonics have shown excellent performance
comparable to that of standard DNNs on a series of benchmark
tasks, such as speech recognition20, economic forecasting32,
action detection in movie data33, and telecom signal
compensation18,19,28. Apart from optics, many physical imple-
mentations have been reported such as spintronic devices34.

However, most conventional demonstrations have been limited
to implementations of a middle recurrent layer called a “reservoir”.
The scalability for chip integration is highly limited due to their
simple architectures (less than 23 neurons in the reservoir14–16). In
addition, the bandwidth is limited by the electrical components

used for the nonlinear activation functions and input–output (I/O)
frontend, such as response-lasers (gigahertz order)12,15 and spatial
light modulators (hertz order)17. As the slowest one determines
the operating time, the potential bandwidth of light (>THz) is
limited to the electrical bandwidth. As a result, the computation
speed, the distinguishing feature of photonic RC, is still considered
to be below or at the same level as that of commercial electrical
hardware such as central processing units (CPUs) or graphics
processing units (GPUs). Note that there has not been a clear
discussion in the literature. Our estimations are discussed in
“Discussion” section.

In this paper, we propose a scalable photonic implementation of
an RC system based on coherent linear photonic processors driven
by an optical pulse source. In contrast to previous approaches,
both the input and reservoir weights are optically encoded in the
spatiotemporal domain, which enables scalable integration on a
compact chip. The ultrafast optical pulse source up-converts the
input signals to the higher frequency region beyond the electrical
bandwidth. In the linear photonic processor, we can operate the
photonic signals beyond the electrical bandwidth limitation.
Although the nonlinear activation functions are only implemented
in the input and output, the complex-valued evolution in coherent
systems ensures rich dynamics comparable to that of incoherent
nonlinear systems as described in the ref. 13. We also demonstrate
parallel processing based on wavelength division multiplexing
(WDM). This enables the use of ultrawide optical bandwidth
(>THz) as a computational resource, which boosts the computa-
tion efficiency beyond the computation bottleneck remaining from
the I/O bandwidth. Experiments with the standard benchmarks
showed good performance for chaotic time-series forecasting and
image classifications with ultrafast processing speed of 17.1 ns per
image. The device can achieve ten TMAC/s for each wavelength
and can reach petascale computation speed on a single photonic
chip by using WDM. Our results are challenging for conventional
Turing–von Neumann machines, and they significantly advance
photonic neuromorphic processing towards peta-scale neuro-
morphic super-computing on a photonic chip.

Results
Basic operation principle. Figure 1a shows the proposed device
architecture for photonic RC. In this system, the radio-frequency
(RF) input signal u(t) with modulation time interval T is coded to
the amplitude of the electromagnetic field of optical pulse, δ(t), by
an optical Mach–Zehnder modulator (MZM). Then, the ultrafast
optical pulse up-converts the RF-signal to the optical frequency,
and this electro-optic conversion results in a sinusoidal non-
linearity. The modulated optical amplitude u′(t) is described as

u0ðtÞ ¼ δðtÞ � jsin½π=2fγuðtÞ þ Vo=Vπg�j; ð1Þ
where Vo is offset voltage, and γ and Vπ are the characteristic
voltages of the MZM. Then, the converted signals u′(t) are input
to first stage of the linear optical circuits for the spatiotemporal
input-masking. In this part, they are split into N-branches and
then transmitted through different delay lines with a delay dif-
ferential θ. The θ is set to satisfy the relationship θ = T/N, where
N is the virtual node count in a single optical cavity11,12,35. Then,
they are weighted by optical cross connecting units. This means
that the input signals spread along time and space division with
complex-valued weights. In general, the masked response sl(t)
with continuous time representation is described as

sl tð Þ ¼
Z t

�1
hl τð Þu0 t � τð Þdτ; ð2Þ

where hl(τ) is an impulse response to the lth output port for the
input mask circuit. For the comparison with the digital mask
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operation11,12,35, we consider a discretized time t(n,i) corre-
sponding to each interval of duration θ and T: t′(n, i) = nT+ iθ,
where n ∈ Z and i ∈ [1; N]. By considering the ideal optical
impulse with repeating time of T, the discretized expression of (1)
is described as

sl n; ið Þ ¼ hl;iu0ðnÞ: ð3Þ

hl;i ¼ ml;iexpðjΨl;iÞ;
where ml,i ∈ [0; 1] and Ψl,i∈ [0; 2π] are the amplitude and phase
delay from ith delay line to lth spatial. Thus, the input mask circuit
acts as all-optical complex-valued spatiotemporal input weight
generator. The matrix shape hl,I and its programmability depend
on the type of optical cross connects. More detailed explanations
for the input mask circuit are described in the Supplementary
Note 1 and Supplementary Fig. 1. The masked optical signals sl(t)
are input to the second stage of the optical processor. In this part,
the integrated L-array of coherent cavities acts as spatially parallel
delay-based optical reservoir with complex-valued evolution. As
discussed in the refs. 36,37, a parallel reservoir computer increase

the virtual node count in the reservoir, which enhance the per-
formance. The evolution equation of the complex-valued ampli-
tude inside the lth reservoir cavity is given by

xl tð Þ ¼ αl exp jφl

� �
xl t � Tlð Þ þ βlsl tð Þ; ð4Þ

where Tl is the roundtrip time, αl is the feedback gain that is
reconfigured through a programmable optical attenuator inside
the cavity, βl is the transmission coefficient of the input fiber
coupler, j is an imaginary unit, and φ1 is the phase detuning of the
cavity. The subscript l denotes that the parameters are for lth
cavity. The Tl is typically set to Tl= TN/(N-q), where 0 ≤ q <N.
Then, the continuous time evolution in (2) can be approximated
by the following discrete time evolution equations:

xl n; ið Þ ¼ αl exp jΔφl

� �
xl n� 1; i� qð Þ þ βlsl n; ið Þ ðq < i ≤ NÞ

xl n; ið Þ ¼ αl exp jΔφl

� �
xl n� 2;N þ i� qð Þ þ βlsl n; ið Þ ð0 ≤ i ≤ qÞ

(
:

ð5Þ

Thus, the parallel optical cavities act as parallel reservoir
cavities. Although the nonlinear activation functions are only

Fig. 1 Scalable reservoir computer (RC) on coherent photonic processor. a Schematics of proposed reservoir computing architecture. The electric input
signal u(t) with modulation time interval T is coded on optical pulse, δ(t) by optical modulator. This electro-optic conversion results in a sinusoidal
nonlinearity (Fin). In the optical circuit, both the input and reservoir weights are encoded in the spatiotemporal domain. L-array of optical cavities with N
temporal nodes acts as RC system with N × L virtual nodes. The output signals from optical circuit are detected by photodetectors (PDs), which generate
nonlinear conversion (Fout). The detected signals |xl|2 are weighted and summed by digital processing unit to obtain final output y(t). b, c Schematic of
waveguide layout for b input mask circuit, and c reservoir circuit. Three types of possible installations for optical connection in the input mask circuit are
also shown in c. The input weights hl and reservoir parameters αl, βl, φl can be reconfigured by tuning the phase shifter (PS), Mach–Zehnder interferometer
(MZI) and variable optical attenuator (VOA).
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implemented in the input and output, the complex-valued
evolution in coherent systems ensures rich dynamics comparable
to that in incoherent nonlinear systems, as described in13. The
signals from the reservoir cavity are directly detected by
photodiodes (PDs) installed after each cavity. Their dynamics
are sampled by using an analog-to-digital converter or oscillo-
scope with a sampling interval of θ′. Their discretized dynamic
responses are considered as the squared norm of complex-valued
virtual node response jxl n; ið Þj2, where n′ ∈ [1; N′(=Nθ′/θ)] and
N′ are the measurable nodes. The outputs y(n′) are obtained from
weighted summation of jxl n0; ið Þj2, which is described as:

y n0ð Þ ¼
XL
l

XN
i

ωl;ijxl n0; ið Þj2; ð6Þ

where ωl,i are trainable read-out weights, which are determined
by minimizing the mean square error using the Tikhonov
regularization or standard gradient descent method. We can
obtain the y(n′) value with time interval T, which is the same as
the input one.

The equilibrium network architecture is also shown in Fig. 1a.
As the proposed architecture can integrate the spatiotemporal RC
system on a compact chip, it is more scalable than the
conventional on-chip integration13–15. In contrast to previous
digital pre-processing11,12,35, we can set the short virtual node
interval θ beyond the RF input sampling rates by setting a short
delay difference and using an ultrafast pulse source. For instance,
we can achieve the ultra-wideband optical computing on a single
photonic chip by employing the femtosecond (>THz) or
attosecond pulse lasers (>PHz). However, in this condition, the
measurement of the reservoir state and post processing are
difficult to perform due to the output sampling rate θ′. Thus, it
remains as the final bottleneck. Although the output bandwidth
still remains bottleneck to access the ultrawide bandwidth of light,
we can overcome it by using WDM and thus use the ultrawide
optical bandwidth (>THz) as a computational resource to boost
the computation efficiency much more. The details are described
in subsection “Parallel data processing using WDM”.

Integrated coherent linear photonic processor. As the proposed
system requires coherent interference for the MAC operation, we
need to accurately maintain the phases and delays in the optics. In
addition, the system needs functional optics, including couplers,
phase shifters, variable optical attenuators (VOAs), and MZIs.
Thus, it is very difficult to build this optics with bulk fiber optics.
Here, we employ our photonic platform technology, called the
planar lightwave circuit (PLC), to integrate such a complex sys-
tem on a compact chip. The PLC is a silica-based waveguide
technology that has excellent features for composing functional
optical devices: low transmittance loss (~0.02 dB/cm), mass fab-
rication using standard wafer processes, excellent stability (>10-
year operation38), many available lineup functional components,
including interferometers and delay lines39, and a wide operating
bandwidth (visible40 to mid-infrared wavelengths38,39). Thanks to
these features, PLC devices have already been installed as optical
systems for optical fiber links and have also been utilized as
advanced circuits for fundamental science such as a quantum
photonics41 and an optical lattice clock42. Here, we apply this
technology to the photonic RC for the first time.

As a first demonstration, we integrated the above described
linear optical system with N = 32 and L = 16 into the PLC. Thus,
there are 512 virtual neurons in the circuit. Figure 1b show a
schematic of the PLC layout for the input mask. For simplicity,
the case for the RC with N = 8 is illustrated. The delay difference
θ in the input mask circuit is set to ~8.3 ps (1/120 GHz) by
adjusting the waveguide length. As this delay value corresponds

to the optical path length of ~2.49 mm, it can be accurately
implemented to the PLC by using a standard lithography
technique (submicrometer accuracy). For the splitting and
weighting of the signal, the MZIs are integrated in the mask
circuits. Each MZI has two heaters to adjust its phase by using the
thermos-optic effect. The MZIs apply the following unitary
conversion:

U ¼ ejξ2 sinðξ1=2Þ ejξ2 cosðξ1=2Þ
cosðξ1=2Þ �sinðξ1=2Þ

 !
; ð7Þ

where ξ1 and ξ2 are the phase shift of MZIs shown in the inset of
Fig. 1b. By cascading the MZIs, we can realize various N × N
optical topologies. Here, we illustrate three types of possible
installations at the bottom of Fig. 1b. The simplest case is to use a
mirror of a 1:N variable splitter as shown in Type I in Fig. 1b43.
This filter supports the arbitrary dense connection to the center
output port with only an (N − 1) array of MZIs . However, the
connection to the other spatial port becomes sparse. This means
that the hl,I for l = L/2 is dense and fully programmable, but the
other ports are sparse and not programmable. The dense
connection can be realized by using an N(N − 1)/2 array of
MZIs as shown in Type II in Fig. 1b, which is called a universal
unitary operator44,45. Although this architecture can realize dense
and fully programmable connections to the output ports, only
unitary conversion is supported. The arbitrary matrix connection
is realized by combining 2N(N − 1) MZIs as shown in Type III in
Fig. 1b4,46,47. This network uses a physical instantiation of the
singular value decomposition, which is a factorization of any
matrix (M) as M = UΣV†, where U is an N × N unitary matrix; Σ
is an N × N diagonal, rectangular matrix of nonnegative real
numbers; and V is an N × N unitary matrix. Here, two universal
unitary circuits (U, V†) are connected by a column of single MZIs
that are used as variable attenuators implementing Σ. Although
the densely connected input mask is preferred to achieve better
RC performance, the dense unitary conversion requires 496 MZIs
for N = 32, which is challenging for the first trial due to the
complex wiring and operation. Thus, in this study we employed
Type I, which only requires 31 MZIs.

Figure 1c show a schematic of reservoir coherent cavities. For
simplicity, the case for RC with L = 4 is illustrated in this figure.
A VOA, phase shifter, and variable coupler is installed in each
cavity. A previous coherent cavity-based RC13 was implemented
in an optical fiber ring with a length of over 200 m. In contrast,
we can integrate the system on a compact optical chip thanks to
the small θ value. The previous fiber cavity was unstable in terms
of temperature and vibration, and thus required the huge thermal
isolation and an external feedback operation to stabilize the
device. On the other hand, our cavity can be compactly
implemented on an optical chip by using silica-based optical
waveguide technology. Moreover, it is highly stable and does not
require any feedback operation thanks to the telecom-grade PLC
technology. The cavity length is set to (6.0 + 0.4 × l) cm, where l
is the cavity number. The corresponding roundtrip time is
(~290 + 20 × l) ps. In the reservoir PLC, the coupling ratio to the
passive cavity is set to 10/90, which corresponds to β in Eq. (11) is
(0.1)1/2 = 0.316. The αl ∈ [0, αl,max] and φ ∈ [0, 2π] for each
optical layer is also reconfigurable by tuning the MZIs on the RC
chips. The achievable αl,max value depends on the cavity number
due to the loss increase from the intersection points, which is
almost completely determined by αl;max ¼ 0:87� 0:021´ l. This
dependence could be reduced by optimizing the waveguide
design. Figure 2 shows the appearance of our optical RC circuit
fabricated by the PLC technique. The input mask and reservoir
circuit were fabricated on the separate chips for the ease of
characterization. These chips are connected by the optical fiber
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array. The footprint of the input and reservoir circuit were 41 ×
46 and 28 × 47 mm2, respectively.

Here, we performed experiments to examine the fabricated
chip’s performance. First, we input the ASE light to the PLC for
input mask and observed the transmittance spectrum to confirm
the filtering performance. In this setup, two neighboring port
were coupled to the center output port with the same optical
power. Figure 3a shows the experimentally obtained filtering
shape of the fabricated input mask circuit for the center output
port (number 16) over the wavelength range of 1530–1565 nm. A
magnified view is shown in Fig. 3b. For this experiment, the delay
difference was set to θ as shown in Fig. 3e. As can be seen in
Fig. 3a, flat and repeated wavelength dependence is obtained,
suggesting the circuit can be used for an ultra-wideband optical
processor. The observed extinction ratio of 20 dB suggests the
good performance of the fabricated MZIs. The observed
wavelength duration of 120 GHz suggests accurate implementa-
tion of θ. By changing the interfering port as shown in Fig. 3f, we
observed a change in the wavelength duration of 60 GHz as
expected [Fig. 3c]. When we randomly set the input mask
parameter [Fig. 3g], we can set the random filtering shape as
shown in Fig. 3d. Thus, the fabricated circuits can be used for the
optical mask circuit. Next, we examined the time domain
response and the stability of the fabricated chip. For this
experiment, we input the masked signal into the center coherent
cavity (number 8) to check the overall characteristics of the RC
system as shown in Fig. 3k. Figure 3i shows the reservoir response
of cavity number 8 before and after the 3-h operation. The input
signal [Fig. 3h] and the output error [Fig. 3j] are also plotted. In
this experiment, we randomly generated the mask function and α
and φ were set to 0.5 and 0.1π, respectively. A continuous
coherent pulse with repeating time of 512 ps [top of Fig. 3e] was
input to the system The response of the center output port was
observed with an oscilloscope. As shown in this figure, we can
successfully generate the time domain response along the time
domain thanks to the input mask and reservoir circuit [Fig. 3i].
As is well known, a coherent system is highly sensitive to the
changes in the optical phase due to changes in the surrounding
temperature or vibration. Thus, the previous coherent cavity-
based RC requires a complex feedback system to stabilize the RC
outputs13. On the other hand, thanks to the solid-state circuit
technology, the reservoir response for the fabricated circuit is
stable over a period of three hours without any feedback
operation, which is enough time to execute most RC tasks.

Chaotic time-series expectation. We used the Santa-Fe time-
series prediction task48 to evaluate the RC performance. The aim

of this task is to perform one-step-ahead prediction of chaotic
data. The chaotic laser data were generated from a far-infrared
laser. We used 2000 steps for training and 1000 steps for testing.
For the training, we utilized the same teacher signal d(n) = u(n +
1). The training was done by standard Tikhonov regression. The
amplitude of the Santa Fe time series was normalized so that the
input signal u(n) of the Santa Fe time series ranged from 0 to 1.

First, we compared the bandwidth of input signal u(t) and
reservoir output |x(t)|2 to confirm our concept described above.
We used the center cavity (lane 8) for this experiment. The
relative feedback phase was set to Δϕl = 0.1π. Figure 4a shows the
measured bandwidth of input data u(t) of Santa-Fe chaotic time-
series and reservoir output |xl(t)|2. As can be seen in this figure,
the bandwidth of the RF input is elongated thanks to the optical
pulse modulation. Thus, we can execute RC processing beyond
the input RF bandwidth. The observed maximum bandwidth was
limited by the bandwidth of the oscilloscope (~20 GHz) in this
experiment. By utilizing an electrical system with higher
bandwidth, the signals can be up-converted to a much higher
frequency region with the same optical circuits.

Next, we examined the performance on the chaotic-time-series
expectation of our RC for a single cavity. Figure 4b shows the
normalize mean square error (NMSE) as a function of feedback
gain. For comparison, the simulation performance for the passive
cavity and optoelectric reservoir with N = 16 are also plotted in
the figure. For this simulation, we estimated the NMSE using Eqs.
(3) and (5) with q = 1. The impulse response was set randomly to
keep the following constraint: |Σhl, i|2 = 1. The feedback gain was
swept from zero to one, and the relative feedback phase was set to
Δϕl = 0.1π, the same as the physical setup. The experimental
results well agree with the simulation, suggesting the good
performance of our constructed optical circuit. As shown in the
figure, the NMSE highly depended on the spectral radius of the
reservoir connection (i.e., feedback gain in this case). This
behavior was also observed in previous RC systems, and it implies
the enhanced memory capacity in the large feedback condition.
The observed NMSE was comparable to the optoelectric RC11 in
spite of the lack of the nonlinear element in the cavity.

Next, we investigated the performance using multiple cavities.
The reservoir parameters were randomly set for each cavity. The
measured reservoir responses of all the cavities are shown in
Fig. 4c. Various responses were observed from each cavity. From
these responses, we estimated the NMSE as a function of the
number of parallel cavities as shown in Fig. 4d. The NMSE is
monotonically reduced by adding the cavities, and NMSE of 0.06
is achieved, which is superior to that of a previous on-chip RC15

thanks to the increment of virtual nodes. This result indicates that

Fig. 2 Fabricated optical circuit for reservoir computing. a, b Appearance of fabricated optical circuit for a input mask and b reservoir circuit. Silica-based
waveguide platform technology, called the planar lightwave circuit (PLC), was employed to integrate a complex optical system on a compact chip.
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the virtual nodes obtained from the parallel cavities are more
effective for the chaotic time-series prediction task than those
obtained from a single temporal sequence of a single cavity.

Image classification. We tested the image classification task to
confirm the multidimensional data classification using multiple
cavities. The dataset comprised hand-written-digits in the Mod-
ified National Institute of Standards and Technology (MNIST)
database49. The processing procedure for multidimensional
inputs is shown in Fig. 5a. For preprocessing, the original 28 × 28
images were resized to 16 × 16 ones. To covert the temporal data,
the 2 × 2 time-sliding window was used for data input. Different
digit data are multiplexed in different time slots. The sliding step
was set to 2. Thus, the input image data were converted to a four-
dimensional time series with 64 time steps. These signals were
converted to optical data, and they were processed by the input
mask and reservoir optical circuits. The detailed operation for the
multidimensional input is described in the “Methods” section.
The output signals from each reservoir cavity were acquired by
multiple photodetectors. The signals were weighted and summed
by using Eq. (6). For the training, we used 60,000 images from the
training dataset of MNIST. As this requires large-scale memory
for Tikhonov regression, we optimized the readout weights in real
time using the gradient descent method with the minibatch size of
200 and the learning rate of 5 × 10−3. The training was executed
in only one epoch. For the test phase, we validated the 10,000 data
from the test dataset.

An example of the time domain reservoir responses (cavity
number 8) is plotted in Fig. 5b. These responses indicate that we

can process the input images at a speed of 17.1 ns per image,
which is much faster than the standard RC using electrical
hardware; RC with same architecture takes ~1 ms using an 8-core
3.1-GHz CPU. The training and test results are shown in Fig. 5c,
d. As shown in Fig. 5b, the training accuracy almost
monotonically increased, suggesting the success of the training.
The test accuracies were improved by increasing the parallelism
of the RC, and we achieved maximum test accuracy of 91.3% for
the 16 parallel RC case. To the best of our knowledge, this is first
experimental demonstration of image classification using on-chip
photonic RC. However, this value is still inferior to the accuracy
for standard deep neural network models. As discussed in21,
around 16,000 reservoir nodes are required to achieve state-of-
the-art performance for the MNIST benchmark. As the node
number of our device is 512, we need to construct 32 times larger
circuits: e.g., the proposed optical circuit with N = L = 128 array
is required, which needs the 128 × 128 optical cross-connects for
the input mask and 128 array of 32-cm delay lines for the
reservoir circuit. The fabrication of these components are
challenging. However, it could be possible by using state-of-the-
art manufacturing technology50–52.

Parallel data processing using WDM. As described above, we
can operate the photonic signals beyond the input RF limitation
by using our device. The circuit also has potential for ultra-
wideband operation thanks to the flat passband over
1530–1570 nm (~5 THz) as shown in Fig. 3a. However, the
remaining bottleneck from the output still limits the processing
speed. Here, we demonstrate parallel processing based on WDM

Fig. 3 Frequency and time response of fabricated circuit. a Experimentally obtained wavelength (frequency) filtering shape of the fabricated input mask
circuit for the center output port (number 16) over the wavelength range of 1530–1565 nm. The delay difference was set to θ. b Magnified view for a. c, d
Filtering shape with c delay difference of 2θ and d randomly set input mask. e–g Setting state of input mask circuit with e delay difference of θ [for a and b],
f 2θ [for c], and g random state [for d]. The observed frequency response suggests the accurate implementation of input mask circuit. We also examined
the time domain response and the stability of the fabricated chip by inputting the masked signal into the center coherent cavity (number 8). h–j, h Input
pulse and i time responses of reservoir computer before and after 3-h operation and j their error. k Setting state of input mask and reservoir circuit [for
h–j]. Thanks to the solid-state circuit technology, the reservoir response for the fabricated circuit is stable over a period of three hours without any
feedback operation, which is enough time to execute most RC tasks.
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to boost the computation efficiency. Figure 6a shows the WDM
processing with the proposed chip. In this scheme, the optical
inputs with wavelength channel spacing of Δλ are multiplexed
into a single optical transmission line and then input to the
optical circuit. The input mask operation of our circuit is equi-
librium to the frequency filtering of the up-converted signals. As
shown in this figure, the filtering shape is repeated along the λ-
axis due to the circulating nature of the optical phase. This feature
was experimentally confirmed as shown in Fig. 3a–d. As the
repeating frequency is determined by the minimum delay dif-
ference in the filter, we can generate the same optical mask
function when we set the channel spacing Δλ= cθ. Thus, we can
use the full optical bandwidth of our device by multiplexing the
multiple wavelength inputs. The feedback αl can be kept constant
by setting the optical paths length in the MZMs to the same
length. Unfortunately, the relative phase and delay length are
changed due to the group delay of the circuit. However, the
impact on the performance is relatively smaller than that of the
other hyper parameters in RC. The output signals from the
optical circuits are demultiplexed and detected by the detectors.
The reservoir responses for each wavelength channel are weighted

and summed individually, which is considered as the wavelength
parallel RC outputs. Thus, we can realize parallel RC on the same
optical chip simultaneously. As a result, we can use the full optical
bandwidth of our circuit (~5 THz) beyond the remaining bot-
tleneck from the outputs bandwidth.

For the demonstration, we examined the parallel RC processing
using two wavelength inputs. We used different datasets (MNIST
and Fashion-MNIST datasets) for the classification task. The
input spectrum is shown in Fig. 6b. The Fashion-MNIST data
were modulated onto the wavelength of 1550 nm, and the MNIST
data were modulated onto that of 1550.966 nm, corresponding to
channel spacing of 120-GHz to set the same optical mask shape.
We employed only one cavity in this demonstration. The training
results are shown in Fig. 6c. The training accuracy increased
almost monotonically, which suggests the success of the proposed
WDM approach. The observed test accuracies were 79.2% for the
MNIST and 70.1% for the Fashion-MNIST datasets. The results
for the MNIST are almost comparable to those for the single-
wavelength experiment [the result for the single cavity in Fig. 5d]
despite the change of wavelength. This suggests that the
performance degradation in the WDM approach is small. Thus,

Fig. 4 Chaotic time-series expectation. a Observed bandwidth for radio-frequency (RF) input chaotic time-series and reservoir response. b Normalized
mean square error (NMSE) as a function of feedback gain for single cavity experiment. c Reservoir response of all cavity. d NMSE as a function of cavity
parallelism. Error bars in b and d represent one standard deviation.
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we think that we can improve the accuracy to 91.3% by using the
multiple cavities as shown in Fig. 5d. Although we only confirmed
the feasibility for two-wavelength input due to the limitations of
the WDM experimental setup, the fabricated circuit can support
40 wavelength channels over the telecom C-band at least. The
results confirm the potential of ultra-wideband processing
through WDM.

Discussion
Here, we discuss the computational efficiency of the proposed
circuit. Although there are many indices for expressing the per-
formance of a computing device, the multiply-accumulate
per second speed (MAC∙s−1) is now widely considered to be a
milestone in the photonic neuromorphic computation
region9,53,54. Thus, we discuss this index for the reservoir com-
puter. Our photonic circuit can compute the input and reservoir
layer propagation as described in Eqs. (3) and (5). The equili-
brium algorithm for our photonic reservoir computer with
multiple ring cavities for the case of one-dimensional input (M =
1) is shown in Algorithm 1. The second term is input mask
operation as described in Eq. (3). The first term and the sum-
mation of first and second terms are the reservoir operation as
described as Eq. (5). Note that Ωijl in the Algorithm 1 is an inter-
reservoir connection, which depends on the q value (delay length
of each cavity). For ease of understanding, we describe the case
for q = 1. The computational complexity of the photonic circuit
does not depend on the q value. This algorithm requires the

following MAC operations for each time step: 6 NL times mul-
tiplication for the reservoir operation (first term), 6N Lσ times
multiplication for the mask operation, where σ is the non-zero
density of hli (second term), and (2 NL) times for summation of
the first and second terms. Note that the processing is executed
on the complex space, which requires two (six times) calculations
for the sum (multiplex) operation. The average σ value for the FIR
filter is considered as 0.5. Thus, the total MAC for each time-step
in our device is considered as 11 NL. As the operation time of
each time step for the optical circuit is determined by modulation
time interval T, the MAC/s can be expressed as 11 L/θ. For theM-
dimensional case, input mask operation becomes more complex,
and it requires 0.2 (4M − 1) σNL times operations (see Supple-
mentary Note 1). Thus, the MAC∙s−1 for our photonic RC can be
described as follows:

MAC � s�1 ¼ ð4M þ 7ÞNL=T ¼ ð4M þ 7ÞL=θ: ð8Þ
As M is an input-data-oriented value, L/θ is the important

value for the device. The L value is the limited to the size and
device components of the optical circuit. The T (=Nθ) is deter-
mined by the optical pulse width. Note that the typical single
delay-line RC approach gives MAC∙s−1 of only 2N/θ because it
does not have an optical input mask and L = 1 with real-valued
processing.
Algorithm 1 Photonic reservoir computing with multiple ring
cavity.
for n = 0:nmax (time evolution).

Fig. 5 Hand-written-digit recognition. a Processing scheme for Modified National Institute of Standards and Technology (MNIST) database. Original digit
images were converted to optical time-series data, and they were processed by the input mask and reservoir optical circuits. The signals were detected by
photodetectors (PDs) and classified by digital output layer. b Measured time response of reservoir for the center cavity (l = 8). c Training accuracy as a
function of learned images. d Test accuracy as a function of cavity parallelism. Error bars represent one standard deviation.
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for l = 1:L (loop for multiple cavity)
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end
end

Figure 7 shows estimated MAC∙s−1 for each wavelength
(MAC∙s−1∙λ−1) as a function of θ for various L values. Here, we
assume M = 1 [Fig. 7a] and M = 4 [Fig. 7b], which are the values
we used for the chaotic series expectation and image classification
tasks in this work. In our circuit, the spatially distributed delay
lines, optical cavities, and optical interferometers solve Eqs. (3)
and (5) in parallel, which result in much faster computation speed
beyond the input RF-bandwidth. The performance reached 21.12
and 44.16 T MAC∙s−1. for M = 1 and 4 for our fabricated circuit
(θ = 12.5 ps, L = 16). The total power consumption of our system
is estimated to be 1330W: 20W for the optical circuit; 20W for
the detector, including the post RF amplifier; 120W for the

optical pulse source, including the optical modulator and RF
amplifier; 700W for the oscilloscope, 180W for the arbitrary
waveform generator, and 290W for our desk-top PC. As the
values were estimated from nominal values in the catalog spec
sheet, the actual total power consumption is less than this esti-
mation. Thus, the energy efficiency of our circuit [MAC s−1 per
watt (MAC s−1W−1)] can be estimated as 15.9 and 33.2 G MAC
s−1 W−1 for M = 1 and 4. This value is for state-of-the-art
electric computational devices (the present best performance is
21.108 GMAC s−1 for MN-355 in June 2020). As can be seen,
most of the power consumption originates from the electric
devices (oscilloscope, AWG, and desk-top PC); therefore, we can
reduce the power consumption much more by constructing
application-specific circuits. In addition, as demonstrated in this
study, the WDM technique enables the optical circuit to share the
parallel data inputs. Our circuit supports the C-band (1530–1570
nm, which has ~ 5-THz bandwidth) with wavelength-spacing of
120 GHz. Thus, we can potentially use 40 wavelength channels in
our circuit, which realizes petascale optical reservoir processing
(0.845 and 1.77 PMAC s−1 for M = 1 and 4). These speeds are
much higher than the theoretical operation speed of recent CPUs
[~500 G MAC s−1 (16 MAC × 3 GHz × 10 core)] and GPUs [~6
T MAC s−1 (2 MAC × 1 GHz × 3000 core)]. This value is not far

Fig. 6 Parallel processing using wavelength division multiplexing (WDM). a Schematic of parallel reservoir computing using WDM. As the filtering
shape of input mask is repeated along the wavelength (λ) axis, we can process the WDM-input data in parallel with cθ channel spacing. b Spectra of
WDM-inputs. c Training accuracy as a function of learned images.
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from that for current state-of-the art of supercomputers, which
ranges from 1 to 100 PMAC/s. Therefore, our approach poses a
challenge to conventional Turing–von Neumann machines, and
it confirms the great potential of photonic neuromorphic
processing.

Conclusion
In this paper, we demonstrated photonic RC based on coherent
linear photonic processors. In contrast to previous approaches,
both the input signals and reservoir weights are optically encoded
in the spatiotemporal domain, which enables scalable integration
on a compact chip. The ultrafast optical pulse source up-converts
the input signals to a higher frequency region beyond the elec-
trical bandwidth. We also demonstrated parallel processing based
on the wavelength division multiplexing (WDM), which enables
the use of ultrawide optical bandwidth (>THz) as a computa-
tional resource. As a result, the computation efficiency is boosted
beyond the computation bottleneck remaining from the I/O
bandwidth. Experiments for the standard benchmarks showed
good performance for chaotic time-series forecasting and image
classifications with record-high processing speed of ~17.1 ns per
image. The device can achieve 21.12 T MAC s−1 for each wave-
length and can reach peta-scale computation speed on a single
photonic chip by using WDM.

Methods
Experimental setup. Optical pulses with a pulse width of 30 ps and repeating time
T of ~266.7 ps (1/120 GHz ×32), corresponding to p = 1, were generated by using a
coherent laser light source with a 1550-nm wavelength and an amplitude mod-
ulator with a 45-GHz bandwidth. The input data was generated by using an
arbitrary waveform generator with a 20-GHz bandwidth and sampling rate of
60 GSa/s. The synthesizer and arbitrary waveform generator (AWG) were syn-
chronized by using the same clock. The signal was amplified by an optical fiber
amplifier to 10 dBm and input to the fabricated PLC. The mask condition and
reservoir condition were randomly set by controlling the Mach–Zehnder mod-
ulators and phase shifters in the chip. The output signals were filtered by the
wavelength filter. They were measure by using 50-GHz bandwidth photodetectors,
and the observed RF signals were amplified by using low-noise amplifier with a 40-
GHz bandwidth. The signals were acquired by using a digital storage oscilloscope
with an 18-GHz bandwidth and 60 GSa/s (DSO). Thus, the measurable node count
decreased to θ′/θ =1/2 [θ′ ~ 16.7 ps, N’′= 16].

Multidimensional data processing. To process the multidimensional data such as
image information, RC inputs often become time-dependent vector u(t) = [u1(t),
u2(t), …, uM(t)]. To process the such type of data, (M × N)-sized random matrix
are usually employed for the input mask20,21. In the previous work, it is easy to
realize because the input mask was processed in the electric domain. However,
there are no reports for input masking for photonic implementation. Here, we
consider the method for input masking by using the same photonic convolutional
filter. In our device, there are two ways to process the multidimensional inputs. The
first way is simply inputs the signal to multiple input ports like the conventional

on-chip ANNs4. However, this architecture requires multiple laser sources, which
requires complex and expensive hardware update; e.g., for MNIST task, which is a
standard image classification task, requires 28 inputs. It requires 28 laser inputs
with optoelectric modulator array. In addition, when their relative phases and/or
intensity are fluctuated, the optical output is also fluctuated due to interferometric
condition changes. It leads the poor accuracy of the system. Thus, we adapt the
second choice, that is time division multiplexing as shown in Fig. 1. This method
does not require any hardware update. In this method, the multi-dimensional
inputs are arranged in different time slot. To realize it, the radio-frequency (RF)
input signal u(t) is set to following form.

uðtÞ ¼ ½u1ðtÞ; u2ðtÞ; ¼ ; uMðtÞ; u1ðt þ 1Þ; u2ðt þ 1Þ; ¼ ; uMðt þ 1Þ; u1ðt þ 2Þ; ¼ �;
ð9Þ

where the modulation interval T′ is set to T′ = T/M. The repeating time of optical
pulse is also set to T′. Then, the δ(t) is described as follows;

δ n; ið Þ ¼ 1 ði ¼ N=MÞ
0 ði≠N=MÞ

�
; ð10Þ

Then, the modulated optical pulse u′(n) for discretized time t(n,i) can be
described as the orthonormal basis of input vector
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To satisfy the synchronization between RF-input and optical pulse, N/M should
be set to integer value. The reservoir processing and post processing are same as the
way for one-dimensional case. Thus we can process the multidimensional data by
using the same optical circuit.

Training of readout. The parameter of RC is only readout weight ω, which forms a
linear combination of the reservoir states. For the training, we collected the
reservoir response |x|2 from each photodetector during training period, Ttrain Then,
we obtained the Nr × Ttrain state matrix S, where Nr is the number of reservoir
nodes (in our case, Nr = NL). The goal of the optimization is to find the ω in such a
way that the actual output Y=ωS matches the desired output Yteacher as close as
possible in the least-squares sense. This is a linear problem. For the offline case, the
optimum ω is calculated by using the Moore-Penrose pseudoinverse S† of state
matrix S:

Sy ¼ ðSTSÞ�1ST; ð12Þ

ω ¼ YteacherðSy � λSTIÞ�1; ð13Þ
where λ is the parameter for Ticknov regularization to avoid overfitting, and I is an
Nr-dimensional unity matrix. For the online training, we divided the training data
into chunks (mini-batches). The readout was updated by the following simple
gradient descent method.

ω ωþ ε Yteacher � Yð ÞS; ð14Þ
where ε is learning rate.

Fig. 7 Estimated processing speed. a, b Estimated multiply-accumulate (MAC) per second per wavelength λ (MAC s−1 λ−1) for proposed photonic RC as a
function of 1/θ with a M = 1 and b M = 4.

ARTICLE COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-021-00519-1

10 COMMUNICATIONS PHYSICS |            (2021) 4:20 | https://doi.org/10.1038/s42005-021-00519-1 | www.nature.com/commsphys

www.nature.com/commsphys


Data availability
The data for the current study are available from the corresponding author upon
reasonable request.
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