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Deep physical neural networks trained with 
backpropagation

Logan G. Wright1,2,4 ✉, Tatsuhiro Onodera1,2,4 ✉, Martin M. Stein1, Tianyu Wang1, 
Darren T. Schachter3, Zoey Hu1 & Peter L. McMahon1 ✉

Deep-learning models have become pervasive tools in science and engineering. 
However, their energy requirements now increasingly limit their scalability1. 
Deep-learning accelerators2–9 aim to perform deep learning energy-efficiently, usually 
targeting the inference phase and often by exploiting physical substrates beyond 
conventional electronics. Approaches so far10–22 have been unable to apply the 
backpropagation algorithm to train unconventional novel hardware in situ.  
The advantages of backpropagation have made it the de facto training method for 
large-scale neural networks, so this deficiency constitutes a major impediment. Here 
we introduce a hybrid in situ–in silico algorithm, called physics-aware training, that 
applies backpropagation to train controllable physical systems. Just as deep learning 
realizes computations with deep neural networks made from layers of mathematical 
functions, our approach allows us to train deep physical neural networks made from 
layers of controllable physical systems, even when the physical layers lack any 
mathematical isomorphism to conventional artificial neural network layers.  
To demonstrate the universality of our approach, we train diverse physical neural 
networks based on optics, mechanics and electronics to experimentally perform 
audio and image classification tasks. Physics-aware training combines the scalability 
of backpropagation with the automatic mitigation of imperfections and noise 
achievable with in situ algorithms. Physical neural networks have the potential to 
perform machine learning faster and more energy-efficiently than conventional 
electronic processors and, more broadly, can endow physical systems with 
automatically designed physical functionalities, for example, for robotics23–26, 
materials27–29 and smart sensors30–32.

Like many historical developments in artificial intelligence33,34, the 
widespread adoption of deep neural networks (DNNs) was enabled 
in part by synergistic hardware. In 2012, building on earlier works, 
Krizhevsky et al. showed that the backpropagation algorithm could be 
efficiently executed with graphics-processing units to train large DNNs35 
for image classification. Since 2012, the computational requirements 
of DNN models have grown rapidly, outpacing Moore’s law1. Now, DNNs 
are increasingly limited by hardware energy efficiency.

The emerging DNN energy problem has inspired special-purpose 
hardware: DNN ‘accelerators’2–8, most of which are based on direct 
mathematical isomorphism between the hardware physics and the 
mathematical operations in DNNs (Fig. 1a, b). Several accelerator pro-
posals use physical systems beyond conventional electronics8, such 
as optics9 and analogue electronic crossbar arrays3,4,12. Most devices 
target the inference phase of deep learning, which accounts for up to 
90% of the energy costs of deep learning in commercial deployments1, 
although, increasingly, devices are also addressing the training phase 
(for example, ref. 7).

However, implementing trained mathematical transformations 
by designing hardware for strict, operation-by-operation math-
ematical isomorphism is not the only way to perform efficient 
machine learning. Instead, we can train the hardware’s physical 
transformations directly to perform desired computations. Here 
we call this approach physical neural networks (PNNs) to emphasize 
that physical processes, rather than mathematical operations, are 
trained. This distinction is not merely semantic: by breaking the 
traditional software–hardware division, PNNs provide the possibil-
ity to opportunistically construct neural network hardware from 
virtually any controllable physical system(s). As anyone who has 
simulated the evolution of complex physical systems appreciates, 
physical transformations are often faster and consume less energy 
than their digital emulations. This suggests that PNNs, which can 
harness these physical transformations most directly, may be able 
to perform certain computations far more efficiently than con-
ventional paradigms, and thus provide a route to more scalable, 
energy-efficient and faster machine learning.
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PNNs are particularly well motivated for DNN-like calculations, much 
more so than for digital logic or even other forms of analogue com-
putation. As expected from their robust processing of natural data, 
DNNs and physical processes share numerous structural similarities, 
such as hierarchy, approximate symmetries, noise, redundancy and 
nonlinearity36. As physical systems evolve, they perform transforma-
tions that are effectively equivalent to approximations, variants and/
or combinations of the mathematical operations commonly used in 
DNNs, such as convolutions, nonlinearities and matrix-vector multipli-
cations. Thus, using sequences of controlled physical transformations 
(Fig. 1c), we can realize trainable, hierarchical physical computations, 
that is, deep PNNs (Fig. 1d).

Although the paradigm of constructing computers by directly 
training physical transformations has ancestry in evolved com-
puting materials18, it is today emerging in various fields, including 
optics14,15,17,20, spintronic nano-oscillators10,37, nanoelectronic devices13,19 
and small-scale quantum computers38. A closely related trend is physi-
cal reservoir computing (PRC)21,22, in which the transformations of 
an untrained physical ‘reservoir’ are linearly combined by a trainable 
output layer. Although PRC harnesses generic physical processes for 
computation, it is unable to realize DNN-like hierarchical computations. 
In contrast, approaches that train the physical transformations13–19 

themselves can, in principle, overcome this limitation. To train physical 
transformations experimentally, researchers have frequently relied 
on gradient-free learning algorithms10,18–20. Gradient-based learning 
algorithms, such as the backpropagation algorithm, are considered 
essential for the efficient training and good generalization of large-scale 
DNNs39. Thus, proposals to realize gradient-based training in physical 
hardware have appeared40–47. These inspiring proposals nonetheless 
make assumptions that exclude many physical systems, such as linear-
ity, dissipation-free evolution or that the system be well described by 
gradient dynamics. The most general proposals13–16 overcome such 
constraints by performing training in silico, that is, learning wholly 
within numerical simulations. Although the universality of in silico 
training is empowering, simulations of nonlinear physical systems are 
rarely accurate enough for models trained in silico to transfer accurately 
to real devices.

Here we demonstrate a universal framework using backpropaga-
tion to directly train arbitrary physical systems to execute DNNs, that 
is, PNNs. Our approach is enabled by a hybrid in situ–in silico algo-
rithm, called physics-aware training (PAT). PAT allows us to execute 
the backpropagation algorithm efficiently and accurately on any 
sequence of physical input–output transformations. We demonstrate 
the universality of this approach by experimentally performing image 
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Fig. 1 | Introduction to PNNs. a, Artificial neural networks contain operational 
units (layers): typically, trainable matrix-vector multiplications followed by 
element-wise nonlinear activation functions. b, DNNs use a sequence of layers 
and can be trained to implement multi-step (hierarchical) transformations  
on input data. c, When physical systems evolve, they perform, in effect, 
computations. We partition their controllable properties into input data  
and control parameters. Changing parameters alters the transformation 
performed on data. We consider three examples. In a mechanical (electronic) 
system, input data and parameters are encoded into time-dependent forces 
(voltages) applied to a metal plate (nonlinear circuit). The controlled 

multimode oscillations (transient voltages) are then measured by a microphone 
(oscilloscope). In a nonlinear optical system, pulses pass through a χ (2)  
crystal, producing nonlinearly mixed outputs. Input data and parameters  
are encoded in the input pulses’ spectra, and outputs are obtained from the 
frequency-doubled pulses’ spectra. d, Like DNNs constructed from sequences 
of trainable nonlinear mathematical functions, we construct deep PNNs with 
sequences of trainable physical transformations. In PNNs, each physical layer 
implements a controllable physical function, which does need to be 
mathematically isomorphic to a conventional DNN layer.
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classification using three distinct systems: the multimode mechanical  
oscillations of a driven metal plate, the analogue dynamics of a non-
linear electronicoscillator and ultrafast optical second-harmonic 
generation (SHG). We obtain accurate hierarchical classifiers that 
utilize each system’s unique physical transformations, and that 
inherently mitigate each system’s unique noise processes and imper-
fections. Although PNNs are a radical departure from traditional 
hardware, it is easy to integrate them into modern machine learning. 
We show that PNNs can be seamlessly combined with conventional 
hardware and neural network methods via physical–digital hybrid 
architectures, in which conventional hardware learns to opportun-
istically cooperate with unconventional physical resources using 
PAT. Ultimately, PNNs provide routes to improving the energy  
efficiency and speed of machine learning by many orders of magni-
tude, and pathways to automatically designing complex functional  
devices, such as functional nanoparticles28, robots25,26 and smart 
sensors30–32.

An example PNN based on nonlinear optics
Figure 2 shows an example PNN based on broadband optical pulse 
propagation in quadratic nonlinear media (ultrafast SHG). Ultrafast 
SHG realizes a physical computation roughly analogous to a non-
linear convolution, transforming the input pulse’s near-infrared 
spectrum (about 800-nm centre wavelength) into the blue (about 
400 nm) through a multitude of nonlinear frequency-mixing processes 
(Methods). To control this computation, input data and parameters are 
encoded into sections of the spectrum of the near-infrared pulse by 
modulating its frequency components using a pulse shaper (Fig. 2a). 
This pulse then propagates through a nonlinear crystal, producing a 
blue pulse whose spectrum is measured to read out the result of the 
physical computation.

To realize vowel classification with SHG, we construct a multilayer 
SHG-PNN (Fig. 2b) where the input data for the first physical layer con-
sist of a vowel-formant frequency vector. After the final physical layer, 
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Fig. 2 | An example PNN, implemented experimentally using broadband 
optical SHG. a, Input data are encoded into the spectrum of a laser pulse 
(Methods, Supplementary Section 2). To control transformations implemented  
by the broadband SHG process, a portion of the pulse’s spectrum is used as 
trainable parameters (orange). The physical computation result is obtained 
from the spectrum of a blue (about 390 nm) pulse generated within a χ(2) 

medium. b, To construct a deep PNN, the outputs of the SHG transformations 
are used as inputs to subsequent SHG transformations, with independent 
trainable parameters. c, d, After training the SHG-PNN (see main text, Fig. 3),  
it classifies test vowels with 93% accuracy. c, The confusion matrix for the PNN 
on the test set. d, Representative examples of final-layer output spectra, which 
show the SHG-PNN’s prediction.
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the blue output spectrum is summed using a digital computer into 
seven spectral bins (Fig. 2b, d, Supplementary Figs. 21, 22). The pre-
dicted vowel is identified by the bin with the maximum energy (Fig. 2c). 
In each layer, the output spectrum is digitally renormalized before 
being passed to the next layer (via the pulse shaper), along with a train-
able digital rescaling. Mathematically, this transformation is given by 
x y

y
b= +l a[ +1]

max( )

l

l

[ ]

[ ]
, where x[l] and y[l] are the inputs and outputs of the 

[l]th layer, respectively, and a and b are scalar parameters of the trans-
formation.  Thus, the SHG-PNN’s computations are carried out almost 
entirely by the trained optical transformations, without digital activa-
tion functions or output layers.

Deep PNNs essentially combine the computational philosophy of 
techniques such as PRC21,22 with the trained hierarchical computations 
and gradient-based training of deep learning. In PRC, a physical sys-
tem, often with recurrent dynamics, is used as an untrained feature 
map and a trained linear output layer (typically on a digital computer) 
combines these features to approximate desired functions. In PNNs, 
the backpropagation algorithm is used to adjust physical parameters 
so that a sequence of physical systems performs desired computations 
physically, without needing an output layer. For additional details, see 
Supplementary Section 3.

Physics-aware training
To train the PNNs’ parameters using backpropagation, we use PAT 
(Fig. 3). In the backpropagation algorithm, automatic differentiation 
determines the gradient of a loss function with respect to trainable 
parameters. This makes the algorithm N-times more efficient than 
finite-difference methods for gradient estimation (where N is the num-
ber of parameters). The key component of PAT is the use of mismatched 
forward and backward passes in executing the backpropagation 

algorithm. This technique is well known in neuromorphic com-
puting48–53, appearing recently in direct feedback alignment52 and 
quantization-aware training48, which inspired PAT. PAT generalizes 
these strategies to encompass arbitrary physical layers, arbitrary 
physical network architectures and, more broadly, to differentially 
programmable physical devices.

PAT proceeds as follows (Fig. 3). First, training input data (for example,  
an image) are input to the physical system, along with trainable param-
eters. Second, in the forward pass, the physical system applies its trans-
formation to produce an output. Third, the physical output is compared 
with the intended output to compute the error. Fourth, using a differenti-
able digital model, the gradient of the loss is estimated with respect to the 
controllable parameters. Finally, the parameters are updated according 
to the inferred gradient. This process is repeated, iterating over training 
examples, to reduce the error. See Methods for the intuition behind why 
PAT works and the general multilayer algorithm.

The essential advantages of PAT stem from the forward pass being 
executed by the actual physical hardware, rather than by a simulation. 
Our digital model for SHG is very accurate (Supplementary Fig. 20) 
and includes an accurate noise model (Supplementary Figs. 18, 19). 
However, as evidenced by Fig. 3b, in silico training with this model still 
fails, reaching a maximum vowel-classification accuracy of about 40%. 
In contrast, PAT succeeds, accurately training the SHG-PNN, even when 
additional layers are added (Fig. 3b, c).

Diverse PNNs for image classification
PNNs can learn to accurately perform more complex tasks, can be 
realized with virtually any physical system and can be designed with 
a variety of physical network architectures. In Fig. 4, we present three 
PNN classifiers for the MNIST (Modified National Institute of Standards 
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Fig. 3 | Physics-aware training. a, PAT is a hybrid in situ–in silico algorithm to 
apply backpropagation to train controllable physical parameters so that 
physical systems perform machine-learning tasks accurately even in the 
presence of modelling errors and physical noise. Instead of performing the 
training solely within a digital model (in silico), PAT uses the physical systems to 
compute forward passes. Although only one layer is depicted in a, PAT 

generalizes naturally to multiple layers (Methods). b, Comparison of the 
validation accuracy versus training epoch with PAT and in silico training, for the 
experimental SHG-PNN depicted in Fig. 2b. c, Final experimental test accuracy 
for PAT and in silico training for SHG-PNNs with increasing numbers of physical 
layers. The length of error bars represent two standard errors.
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and Technology database) handwritten digit classification task, based 
on three distinct physical systems. For each physical system, we also 
demonstrate a different PNN architecture, illustrating the variety of 
physical networks possible. In all cases, models were constructed and 
trained using PyTorch54.

In the mechanical PNN (Fig.  4a–d), a metal plate is driven by 
time-varying forces, which encode both input data and trainable 
parameters. The plate’s multimode oscillations enact controllable 

convolutions on the input data (Supplementary Figs. 16, 17). Using 
the plate’s trainable transformation sequentially three times, we clas-
sify 28-by-28 (784 pixel) images that are input as an unrolled time 
series. To control the transformations of each physical layer, we train 
element-wise rescaling of the forces applied to the plate (Fig. 4b, 
Methods). PAT trains the three-layer mechanical PNN to 87% accuracy, 
close to a digital linear classifier55. When the mechanical computa-
tions are replaced by identity operations, and only the digital rescaling 
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Fig. 4 | Image classification with diverse physical systems. We trained  
PNNs based on three physical systems (mechanics, electronics and optics) to 
classify images of handwritten digits. a, The mechanical PNN: the multimode 
oscillations of a metal plate are driven by time-dependent forces that encode 
the input image data and parameters. b, The mechanical PNN multilayer 
architecture. c, The validation classification accuracy versus training epoch for 
the mechanical PNN trained using PAT. The same curves are shown also for a 

reference model where the physical transformations implemented by the 
speaker are replaced by identity operations. d, Confusion matrix for the 
mechanical PNN after training. e–h, The same as a–d, respectively, but for a 
nonlinear analogue-electronic PNN. i–l, The same as a–d, respectively, for a 
hybrid physical–digital PNN based on broadband optical SHG. The final test 
accuracy is 87%, 93% and 97% for the mechanical, electronic and optics-based 
PNNs, respectively.
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operations are trained, the performance of the model is equivalent to 
random guessing (10%). This shows that most of the PNN’s functionality 
comes from the controlled physical transformations.

An analogue-electronic PNN is implemented with a circuit featuring 
a transistor (Fig. 4e–h), which results in a noisy, nonlinear transient 
response (Supplementary Figs. 12, 13). The usage and architecture of 
the electronic PNN are mostly similar to that of the mechanical PNN, 
with several minor differences (Methods). When trained using PAT, 
the analogue-electronic PNN performs the classification task with 
93% test accuracy.

Using broadband SHG, we demonstrate a physical–digital hybrid 
PNN (Fig. 4i–l). This hybrid PNN involves trainable digital linear input 
layers followed by trainable ultrafast SHG transformations. The train-
able SHG transformations boost the performance of the digital baseline 
from roughly 90% accuracy to 97%. The classification task’s difficulty 
is nonlinear with respect to accuracy, so this improvement typically 
requires increasing the number of digital operations by around one 
order of magnitude55. This illustrates how a hybrid physical–digital 
PNN can automatically learn to offload portions of a computation 
from an expensive digital processor to a fast, energy-efficient physi-
cal co-processor.

To show the potential for PNNs to perform more challenging tasks, 
we simulated a multilayer PNN based on a nonlinear oscillator network. 
This PNN is trained with PAT to perform the MNIST task with 99.1% 
accuracy, and the Fashion-MNIST task, which is considered significantly 
harder56, with 90% accuracy, in both cases with simulated physical 
noise, and with mismatch between model and simulated experiment 
of over 20% (Supplementary Section 4).

Discussion
Our results show that controllable physical systems can be trained 
to execute DNN calculations. Many systems that are not convention-
ally used for computation appear to offer, in principle, the capacity 
to perform parts of machine-learning-inference calculations orders 
of magnitude faster and more energy-efficiently than conventional 
hardware (Supplementary Section 5). However, there are two caveats 
to note. First, owing to underlying symmetries and other constraints, 
some systems may be well suited for accelerating a restricted class of 
computations that share the same constraints. Second, PNNs trained 
using PAT can only provide significant benefits during inference, as 
PAT uses a digital model. Thus, as in the hybrid network presented in 
Fig. 4i–l, we expect such PNNs to serve as a resource, rather than as a 
complete replacement, for conventional general-purpose hardware 
(Supplementary Section 5).

Techniques for training hardware in situ7,40–47 and methods for reliable 
in silico training (for example, refs. 57–60) complement these weaknesses. 
Devices trained using in situ learning algorithms will perform learning 
entirely in hardware, potentially realizing learning faster and more 
energy-efficiently than current approaches. Such devices are suited to 
settings in which frequent retraining is required. However, to perform 
both learning and inference, these devices have more specific hardware 
requirements than inference-only hardware, which may limit their 
achievable inference performance. In silico training can train many 
physical parameters of a device, including ones set permanently during 
fabrication12–16. As the resulting hardware will not perform learning, it 
can be optimized for inference. Although accurate, large-scale in silico 
training has been implemented4–6,57–60, this has been achieved with 
only analogue electronics, for which accurate simulations and con-
trolled fabrication processes are available. PAT may be used in settings 
where a simulation–reality gap cannot be avoided, such as if hardware is 
designed at the limit of fabrication tolerances, operated outside usual 
regimes or based on platforms other than conventional electronics.

Improvements to PAT could extend the utility of PNNs. For example, 
PAT’s backward pass could be replaced by a neural network that directly 

estimates parameter updates for the physical system. Implementing 
this ‘teacher’ neural network with a PNN would allow subsequent train-
ing to be performed without digital assistance.

This work has focused so far on the potential application of PNNs as 
accelerators for machine learning, but PNNs are promising for other 
applications as well, particularly those in which physical, rather than 
digital, data are processed or produced. PNNs can perform computations 
on data within its physical domain, allowing for smart sensors30–32 that 
pre-process information before conversion to the electronic domain (for 
example, a low-power, microphone-coupled circuit tuned to recognize 
specific hotwords). As the achievable sensitivity, resolution and energy 
efficiency of many sensors is limited by conversion of information to the 
digital electronic domain, and by processing of that data in digital elec-
tronics, PNN sensors should have advantages. More broadly, with PAT, one 
is simply training the complex functionality of physical systems. Although 
machine learning and sensing are important functionalities, they are but 
two of many23–32 that PAT, and the concept of PNNs, could be applied to.
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Methods

Physics-aware training
To train the PNNs presented in Figs. 2–4, we used PAT to enable us to 
perform backpropagation on the physical apparatuses as automatic 
differentiation (autodiff) functions within PyTorch54 (v1.6). We used 
PyTorch Lightning61 (v0.9) and Weights and Biases62 (v0.10) during 
development as well. PAT is explained in detail in Supplementary Sec-
tion 1, where it is compared with standard backpropagation, and train-
ing physical devices in silico. Here we provide only an overview of PAT 
in the context of a generic multilayer PNN (Supplementary Figs. 2, 3).

PAT can be formalized by the use of custom constituent autodiff 
functions for the physically executed submodules in an overall network 
architecture (Supplementary Fig. 1). In PAT, each physical system’s 
forward functionality is provided by the system’s own controllable 
physical transformation, which can be thought of as a parameterized 
function fp

 that relates the input x, parameters θ, and outputs y of the 
transformation  via y =  fp  (x,θ).  As a physical system cannot be 
auto-differentiated, we use a differentiable digital model fm to approx-
imate each backward pass through a given physical module. This struc-
ture is essentially a generalization of quantization-aware training48, in 
which low-precision neural network hardware is approximated by 
quantizing weights and activation values on the forward pass, but stor-
ing weights and activations, and performing the backward pass with 
full precision.

To see how this works, we consider here the specific case of a mul-
tilayer feedforward PNN with standard stochastic gradient descent.  
In this case, the PAT algorithm with the above-defined custom autodiff 
functions results in the following training loop:

Perform forward pass:
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where g l[ ]θ  and g l[ ]y
 are estimators of the physical systems’ exact gra-

dients, 
L∂

∂ l[ ]θ
 and 

L∂

∂ l[ ]y
, respectively for the l[ ]th layer, obtained by auto-

differentiation of the model, L is the loss, ℓ is the loss function (for 
example, cross-entropy or mean-squared error), targety  is the desired 
(target) output, Ndata is the size of the batch and η is the learning rate. 

l[ +1]x  is the input vector to the l[ + 1]th layer, which for the hidden layers 
of the feedforward architecture is equal to the output vector of  
the previous layer, f= = ( , )l l l l[ +1] [ ]

p
[ ] [ ]x y x θ , where θ l[ ] is the control-

lable (trainable) parameter vector for the l[ ]th layer. For the first layer, 
the input data vector x [1] is the data to be operated on. In PAT, the error 
vector is exactly estimated ( g = L∂

∂
N N[ ] [ ]y y

) as the forward pass is per-
formed by the physical system. This error vector is then backpropa-
gated via equation (3), which involves Jacobian matrices of the 

differential digital model evaluated at the correct inputs at each layer 

(that is, the actual physical inputs) ( , )
f l l∂

∂
[ ] [ ]

T
m





θxx , where T represents 
the transpose operation. Thus, in addition to utilizing the output of 
the PNN (y N[ ]) via physical computations in the forward pass, interme-
diate outputs (y l[ ]) are also utilized to facilitate the computation of 
accurate gradients in PAT.

As it is implemented just by defining a custom autodiff function, 
generalizing PAT for more complex architectures, such as multichan-
nel or hybrid physical–digital models, with different loss functions 
and so on is straightforward. See Supplementary Section 1 for details.

An intuitive motivation for why PAT works is that the training’s opti-
mization of parameters is always grounded in the true optimization 
landscape by the physical forward pass. With PAT, even if gradients are 
estimated only approximately, the true loss function is always precisely 
known. As long as the gradients estimated by the backward pass are 
reasonably accurate, optimization will proceed correctly. Although 
the required training time is expected to increase as the error in gradi-
ent estimation increases, in principle it is sufficient for the estimated 
gradient to be pointing closer to the direction of the true gradient 
than its opposite (that is, that the dot product of the estimated and 
true gradients is positive). Moreover, by using the physical system in 
the forward pass, the true output from each intermediate layer is also 
known, so gradients of intermediate physical layers are always com-
puted with respect to correct inputs. In any form of in silico training, 
compounding errors build up through the imperfect simulation of 
each physical layer, leading to a rapidly diverging simulation–reality 
gap as training proceeds (see Supplementary Section 1 for details).  
As a secondary benefit, PAT ensures that learned models are inherently 
resilient to noise and other imperfections beyond a digital model, as 
the change of loss along noisy directions in parameter space will tend 
to average to zero. This makes training robust to, for example, device–
device variations, and facilitates the learning of noise-resilient (and, 
more speculatively, noise-enhanced) models8.

Differentiable digital models
To perform PAT, a differentiable digital model of the physical system’s 
input–output transformation is required. Any model, fm, of the phys-
ical system’s true forward function, fp, can be used to perform PAT, so 
long as it can be auto-differentiated. Viable approaches include tradi-
tional physics models, black-box machine-learning models13,63,64 and 
physics-informed machine-learning65 models.

In this work, we used the black-box strategy for our differentiable 
digital models, namely DNNs trained on input–output vector pairs from 
the physical systems as fm (except for the mechanical system). Two 
advantages of this approach are that it is fully general (it can be applied 
even to systems in which one has no underlying knowledge-based model 
of the system) and that the accuracy can be extremely high, at least for 
physical inputs, x θθ( , ) , within the distribution of the training data (for 
out-of-distribution generalization, we expect physics-based approaches 
to offer advantages). In addition, the fact that each physical system has 
a precise corresponding DNN means that the resulting PNN can be ana-
lysed as a network of DNNs, which may be useful for explaining the PNN’s 
learned physical algorithm.

For our DNN differentiable digital models, we used a neural archi-
tecture search66 to optimize hyperparameters, including the learning 
rate, number of layers and number of hidden units in each layer. Typi-
cal optimal architectures involved 3–5 layers with 200–1,000 hidden 
units in each, trained using the Adam optimizer, mean-squared loss 
function and learning rates of around 10−4. For more details, see Sup-
plementary Section 2D.1.

For the nonlinear optical system, the test accuracy of the trained digi-
tal model (Supplementary Fig. 20) shows that the model is remarkably 
accurate compared with typical simulation–experiment agreement 
in broadband nonlinear optics, especially considering that the pulses 



used exhibit a complex spatiotemporal structure owing to the pulse 
shaper. The model is not, however, an exact description of the physi-
cal system: the typical error for each element of the output vector is 
about 1–2%. For the analogue electronic circuit, agreement is also good, 
although worse than the other systems (Supplementary Fig. 23), cor-
responding to around 5–10% prediction error for each component of 
the output vector. For the mechanical system, we found that a linear 
model was sufficient to obtain excellent agreement, which resulted 
in a typical error of about 1% for each component of the output vector 
(Supplementary Fig. 26).

In silico training
To train PNNs in silico, we applied a training loop similar to the one 
described above for PAT except that both the forward and backward 
passes are performed using the model (Supplementary Figs. 1, 3), with 
one exception noted below.

To improve the performance of in silico training as much as pos-
sible and permit the fairest comparison with PAT, we also modelled 
the input-dependent noise of the physical system and used this within 
the forward pass of in silico training. To do this, we trained, for each 
physical system, an additional DNN to predict the eigenvectors of the 
output vector’s noise covariance matrix, as a function of the physi-
cal system’s input vector and parameter vector. These noise models 
thus provided an input- and parameter-dependent estimate of the 
distribution of noise in the output vector produced by the physical 
system. We were able to achieve excellent agreement between the noise 
models’ predicted noise distributions and experimental measurements 
(Supplementary Figs. 18, 19). We found that including this noise model 
improved the performance of experiments performed using param-
eters derived from in silico training. Consequently, all in silico training 
results presented in this paper make use of such a model, except for the 
mechanical system, where a simpler, uniform noise model was found to 
be sufficient. For additional details, see Supplementary Section 2D.2.

Although including complex, accurate noise models does not allow 
in silico training to perform as well as PAT, we recommend that such 
models be used whenever in silico training is performed, such as for 
physical architecture search and design and possibly pre-training 
(Supplementary Section 5), as the correspondence with experiment 
(and, in particular, the predicted peak accuracy achievable there) is 
significantly improved over simpler noise models, or when ignoring 
physical noise.

Ultrafast nonlinear optical pulse propagation experiments
For experiments with ultrafast nonlinear pulse propagation in quad-
ratic nonlinear media (Supplementary Figs. 8–10), we shaped pulses 
from a mode-locked titanium:sapphire laser (Spectra Physics Tsunami, 
centred around 780 nm and pulse duration around 100 fs) using a cus-
tom pulse shaper. Our optical pulse shaper used a digital micromirror 
device (DMD, Vialux V-650L) and was inspired by the design in ref. 67. 
Despite the binary modulations of the individual mirrors, we were 
able to achieve multilevel spectral amplitude modulation by varying 
the duty cycle of gratings written to the DMD along the dimension 
orthogonal to the diffraction of the pulse frequencies. To control the 
DMD, we adapted code developed for ref. 68, which is available at ref. 69.

After being shaped by the pulse shaper, the femtosecond pulses 
were focused into a 0.5-mm-long beta-barium borate crystal.  
The multitude of frequencies within the broadband pulses then 
undergo various nonlinear optical processes, including sum-frequency 
generation and SHG. The pulse shaper imparts a complex phase and 
spatiotemporal structure on the pulse, which depend on the input and 
parameters applied through the spectral modulations. These features 
would make it impossible to accurately model the experiment using a 
one-dimensional pulse propagation model. For simplicity, we refer to 
this complex, spatiotemporal quadratic nonlinear pulse propagation 
as ultrafast SHG.

Although the functionality of the SHG-PNN does not rely on a 
closed-form mathematical description or indeed on any form of math-
ematical isomorphism, some readers may find it helpful to understand 
the approximate form of the input–output transformation realized in 
this experimental apparatus. We emphasize that the following model is 
idealistic and meant to convey key intuitions about the physical trans-
formation: the model does not describe the experimental transforma-
tion in a quantitative manner, owing to the numerous experimental 
complexities described above.

The physical transformation of the ultrafast SHG setup is seeded by 
the infrared light from the titanium:sapphire laser. This ultrashort 
pulse can be described by the Fourier transform of the electric field 
envelope of the pulse, A ω( )0 , where ω is the frequency of the field 
detuned relative to the carrier frequency. For simplicity, consider a 
pulse consisting of a set of discrete frequencies or frequency  
bins, whose spectral amplitudes are described by the discrete vector 

A ω A ω A ω= [ ( ), ( ), …, ( )] .N00 0 1 0 2 0
TA  After passing through the pulse-

shaper, the spectral amplitudes of the pulse are then given by

A x A ω x A ω θ A ω θ A ω= [ ( ), ( ), …, ( ), ( ), …] , (5)N N1 0 1 2 0 2 1 0 +1 2 0 +2
T

x x

where Nx is the dimensionality of the data vector, θi are the trainable 
pulse-shaper amplitudes and xi are the elements of the input data vec-
tor. Thus, the output from the pulse shaper encodes both the 
machine-learning data as well as the trainable parameters. Square roots 
are present in equation (5) because the pulse shaper was deliberately 
calibrated to perform an intensity modulation.

The output from the pulse shaper (equation (5)) is then input to the 
ultrafast SHG process. The propagation of an ultrashort pulse through 
a quadratic nonlinear medium results in an input–output transforma-
tion that roughly approximates an autocorrelation, or nonlinear con-
volution, assuming that the dispersion during propagation is small 
and the input pulse is well described by a single spatial mode. In this 
limit, the output blue spectrum B ω( )i  is mathematically given by

∑B ω k A ω ω A ω ω( ) = ( + ) ( − ), (6)i
j

i j i j

where the sum is over all frequency bins  j of the pulsed field. The  
output of the trainable physical transformation y x θf= ( , )p

is given by 
the blue pulse’s spectral power, y B B B= [| | , | | , …, | | ] ,ω ω ω

2 2 2 T
N1 2

where N 
is the length of the output vector.

From this description, it is clear that the physical transformation 
realized by the ultrafast SHG process is not isomorphic to any conven-
tional neural network layer, even in this idealized limit. Nonetheless, 
the physical transformation retains some key features of typical neural 
network layers. First, the physical transformation is nonlinear as the 
SHG process involves the squaring of the input field. Second, as the 
terms within the summation in equation (6) involve both parameters 
and input data, the transformation also mixes the different elements 
of the input data and parameters to product an output. This mixing 
of input elements is similar, but not necessarily directly mathemati-
cally equivalent to, the mixing of input vector elements that occur 
in the matrix-vector multiplications or convolutions that appear in 
conventional neural networks.

Vowel classification with ultrafast SHG
A task often used to demonstrate novel machine-learning hardware 
is the classification of spoken vowels according to formant fre-
quencies10,11. The task involves predicting the spoken vowels given a 
12-dimensional input data vector of formant frequencies extracted 
from audio recordings10. Here we use the vowel dataset from ref. 10, 
which is based on data originally from ref. 70; data available at https://
homepages.wmich.edu/~hillenbr/voweldata.html. This dataset consists 
of 273 data input–output pairs. We used 175 data pairs as the training 

https://homepages.wmich.edu/~hillenbr/voweldata.html
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set—49 for the validation and 49 for the test set. For the results in Figs. 2, 
3, we optimized for the hyperparameters of the PNN architecture using 
the validation error and only evaluated the test error after all optimi-
zation was conducted. In Fig. 3c, for each PNN with a given number 
of layers, the experiment was conducted with two different training, 
validation and test splits of the vowel data. In Fig. 3c, the line plots the 
mean over the two splits, and the error bars are the standard error of 
the mean.

For the vowel-classification PNN presented in Figs.  2, 3, the 
input vector to each SHG physical layer is encoded in a contiguous 
short-wavelength section of the spectral modulation vector sent to the 
pulse shaper, and the trainable parameters are encoded in the spectral 
modulations applied to the rest of the spectrum. For the physical layers 
after the first layer, the input vector to the physical system is the meas-
ured spectrum obtained from the previous layer. For convenience, we 
performed digital renormalization of these output vectors to maximize 
the dynamic range of the input and ensure that inputs were within the 
allowed range of 0 to 1 accepted by the pulse shaper. Relatedly, we found 
that training stability was improved by including additional trainable 
digital re-scaling parameters to the forward-fed vector, allowing the 
overall bias and amplitude scale of the physical inputs to each layer to 
be adjusted during training. These digital parameters appear to have a 
negligible role in the final trained PNN (when the physical transforma-
tions are replaced by identity operations, the network can be trained 
to perform no better than chance, and the final trained values of the 
scale and bias parameters are all very close to 1 and 0, respectively).  
We hypothesize that these trainable rescaling parameters are helpful 
during training to allow the network to escape noise-affected subspaces 
of parameter space. See Supplementary Section 2E.1 for details.

The vowel-classification SHG-PNN architecture (Supplementary 
Fig. 21) was designed to be as simple as possible while still demonstrat-
ing the use of a multilayer architecture with a physical transformation 
that is not isomorphic to a conventional DNN layer, and so that the 
computations involved in performing the classification were essentially 
all performed by the physical system itself. Many aspects of the design 
are not optimal with respect to performance, so design choices, such 
as our specific choice to partition input data and parameter vectors 
into the controllable parameters of the experiment, should not be 
interpreted as representing any systematic optimization. Similarly, the 
vowel-classification task was chosen as a simple example of multidimen-
sional machine-learning classification. As this task can be solved almost 
perfectly by a linear model, it is in fact poorly suited to the nonlinear 
optical transformations of our SHG-PNN, which are fully nonlinear 
(Supplementary Figs. 9, 10). Overall, readers should not interpret this 
PNN’s design as suggestive of optimal design strategies for PNNs. For 
initial guidelines on optimal design strategies, we instead refer readers 
to Supplementary Section 5.

MNIST handwritten digit image classification with a hybrid 
physical–digital SHG-PNN
The design of the hybrid physical–digital MNIST PNN based on ultrafast 
SHG for handwritten digit classification (Fig. 4i–l) was chosen to dem-
onstrate a proof-of-concept PNN in which substantial digital operations 
were co-trained with substantial physical transformations, and in which 
no digital output layer was used (although a digital output layer can be 
used with PNNs, and we expect such a layer will usually improve perfor-
mance, we wanted to avoid confusing readers familiar with reservoir 
computing, and so avoided using digital output layers in this work).

The network (Supplementary Fig. 29) involves four trainable linear 
input layers that operate on MNIST digit images, whose outputs are 
fed into four separate channels in which the SHG physical transforma-
tion is used twice in succession (that is, it is two physical layers deep). 
The output of the final layers of each channel (the final SHG spectra) 
are concatenated, then summed into ten bins to perform a classifica-
tion. The structure of the input layer was chosen to minimize the 

complexity of inputs to the pulse shaper. We found that the output 
second-harmonic spectra produced by the nonlinear optical process 
tended towards featureless triangular spectra if inputs were close to a 
random uniform distribution. Thus, to ensure that output spectra 
varied significantly with respect to changes in the input spectral mod-
ulations, we made sure that inputs to the pulse shaper would exhibit a 
smoother structure in the following way. For each of 4 independent 
channels, 196-dimensional input images (downsampled from 
784-dimensional 28 × 28 images) are first operated on by a 196 by 50 
trainable linear matrix, and then (without any nonlinear digital opera-
tions), a second 50 by 196 trainable linear matrix. The second 50 by 196 
matrix is identical for all channels, the intent being that this matrix 
identifies optimal ‘input modes’ to the SHG process. By varying the 
middle dimension of this two-step linear input layer, one may control 
the amount of structure (number of ‘spectral modes’) allowed in inputs 
to the pulse shaper, as the middle dimension effectively controls the 
rank of the total linear matrix. We found that a middle dimension below 
30 resulted in the most visually varied SHG output spectra, but that 50 
was sufficient for good performance on the MNIST task. In this network, 
we also utilized skip connections between layers in each channel. This 
was done so that the network would be able to ‘choose’ to use the linear 
digital operations to perform the linear part of the classification task 
(for which nearly 90% accuracy can be obtained55) and to thus rely on 
the SHG co-processor primarily for the harder, nonlinear part of the 
classification task. Between the physical layers in each channel, a train-
able, element-wise rescaling was used to allow us to train the second 
physical layer transformations efficiently. That is, x a y b= +i i i i, where 
bi and ai are trainable parameters, and xi and yi are the input to the pulse 
shaper and the measured output spectrum from the previous physical 
layer, respectively.

For further details on the nonlinear optical experimental setup and 
its characterization, we refer readers to Supplementary Section 2A. For 
further details on the vowel-classification SHG-PNN, we refer readers 
to Supplementary Section 2E.1, and for the hybrid physical–digital 
MNIST handwritten digit-classification SHG-PNN, we refer readers to 
Supplementary Section 2E.4.

Analogue electronic circuit experiments
The electronic circuit used for our experiments (Supplementary Fig. 11) 
was a resistor-inductor-capacitor oscillator (RLC oscillator) with a 
transistor embedded within it. It was designed to produce as nonlinear 
and complex a response as possible, while still containing only a few 
simple components (Supplementary Figs. 12, 13). The experiments 
were carried out with standard bulk electronic components, a hobbyist 
circuit breadboard and a USB data acquisition (DAQ) device (Measure-
ment Computing USB-1208-HS-4AO), which allowed for one analogue 
input and one analogue output channel, with a sampling rate of 1 MS s−1.

The electronic circuit provides only a one-dimensional time-series 
input and one-dimensional time-series output. As a result, to partition 
the inputs to the system into trainable parameters and input data so 
that we could control the circuit’s transformation of input data, we 
found it was most convenient to apply parameters to the 
one-dimensional input time-series vector by performing trainable, 
element-wise rescaling on the input time-series vector. That is, 
x a y b= +i i i i , where bi and ai are trainable parameters, yi are the com-
ponents of the input data vector and xi are the re-scaled components 
of the voltage time series that is then sent to the analogue circuit. For 
the first layer, yi are the unrolled pixels of the input MNIST image. For 
hidden layers, yi are the components of the output voltage time-series 
vector from the previous layer.

We found that the electronic circuit’s output was noisy, primarily 
owing to the timing jitter noise that resulted from operating the DAQ 
at its maximum sampling rate (Supplementary Fig. 23). Rather than 
reducing this noise by operating the device more slowly, we were moti-
vated to design the PNN architecture presented in Fig. 4 in a way that 



allowed it to automatically learn to function robustly and accurately, 
even in the presence of up to 20% noise per output vector element 
(See Supplementary Fig. 24 for an expanded depiction of the architec-
ture). First, seven, three-layer feedforward PNNs were trained together, 
with the final prediction provided by averaging the output of all seven, 
three-layer PNNs. Second, skip connections similar to those used in 
residual neural networks were employed71. These measures make the 
output of the network effectively an ensemble average over many dif-
ferent subnetworks71, which allows it to perform accurately and train 
smoothly despite the very high physical noise and multilayer design.

For further details on the analogue electronic experimental setup 
and its characterization, we refer readers to Supplementary Section 2B. 
For further details on the MNIST handwritten digit-classification ana-
logue electronic PNN, we refer readers to Supplementary Section 2E.2.

Oscillating mechanical plate experiments
The mechanical plate oscillator was constructed by attaching a 3.2 cm 
by 3.2 cm by 1 mm titanium plate to a long, centre-mounted screw, 
which was fixed to the voice coil of a commercial full-range speaker 
(Supplementary Figs. 14, 15). The speaker was driven by an audio ampli-
fier (Kinter K2020A+) and the oscillations of the plate were recorded 
using a microphone (Audio-Technica ATR2100x-USB Cardioid Dynamic 
Microphone). The diaphragm of the speaker was completely removed 
so that the sound recorded by the microphone is produced only by the 
oscillating metal plate.

As the physical input (output) to (from) the mechanical oscillator 
is a one-dimensional time series, similar to the electronic circuit, we 
made use of element-wise trainable rescaling to conveniently allow us 
to train the oscillating plate’s physical transformations.

The mechanical PNN architecture for the MNIST handwritten digit 
classification task was chosen to be the simplest multilayer PNN archi-
tecture possible with such a one-dimensional dynamical system (Sup-
plementary Fig. 27). As the mechanical plate’s input–output responses 
are primarily linear convolutions (Supplementary Figs. 16, 17), it is well 
suited to the MNIST handwritten digit classification task, achieving 
nearly the same performance as a digital linear model55.

For further details on the oscillating mechanical plate experi-
mental setup and its characterization, we refer readers to Supple-
mentary Section 2C. For further details on the MNIST handwritten 
digit-classification oscillating mechanical plate PNN, we refer readers 
to Supplementary Section 2E.3.
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