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Optical transfer functions (OTF) of two types of spectrometer — Eagle mounting and
Seya-Namioka mounting — are calculated by the wave-optical method which defines the

OTF as the autocorrelation function of the pupil.

Results obtained are compared with

previous results of the present authors and interpreted as effects of diffraction and

aberration on the broadening of point image.

The OTFs are calculated also by Fourier

transformation of the intensity distribution of point image and compared with those

obtained by the first method.

§1. Introduction

Aberrations of grating spectrometers have
been studied by Beutler’s method," in which
the light path function is expanded in terms
.of variables corresponding to width and height
of grating, and according to Fermat’s prin-
ciple its terms are made equal to zero in turn.
Image performance of spectrometers has been
evaluated by a spot diagram as a result of
ray tracing®® or by an intensity distribution
of point image.*”

On the other hand, the optical transfer func-
tion (OTF) gives a powerful means to eva-
luate image performance of an optical system,
and it has been applied to lens systems in
many ways. Lohmann® applied the OTF to
the plane grating with various kinds of ruling
errors. The OTFs of the two spectrometers
mounted according to Eagle’s and Seya-Nami-
oka’s principle were calculated by Fourier
transformation of the spot diagram obtained
by ray tracing.” This treatment based on
geometrical optics is allowable only if the
spectrometers have considerable amount of
aberrations. However, when the spectrome-
ters have an extremely small amount of aber-
rations or when the region of higher spatial
frequency is considered, the OTF based on
wave optics must be adopted.

A standard method of calculating the OTF
is the Fourier transformation of the intensity
distribution of point image obtained from
Fresnel-Kirchhoff diffraction integral. But a
formidable amount of calculation is needed
because the method contains two steps of
.complicated integral. Therefore, in this paper,
the wave optical OTFs of spectrometers are

calculated from the autocorrelation function
of a pupil. Effects of diffraction and aber-
ration on the OTF of the spectrometers are
studied by comparison of the present result
with the previous one.

§2. Method of Computation

2-1 OTF of spectrometer

Figure 1 shows a coordinate system adopt-
ed in the following. Let W(x, y) be the wave-
front aberration at a point (x, ¥) on the pupil,
then the OTF of an optical system can be
expressed by means of the well-known for-
mula,

Ds, t):—jl—“w exp [zk{W( w+a-, y+%>

—oo

S t
—W( x—7 , 7>de dy,

where (x, ¥) and (s, #) are normalized coordina-
tes on the pupil plane and spatial frequency
variables respectively. In applying this for-
mula to a spectrometer, we use actual coord-
inates (w, /) on the grating surface and actual
spatial frequency v. Since a slit is used as
an object in the spectrometer, only the one
dimensional spatial frequency is considered.
Therefore we have
1)

D(p):LS SPN exp [zk{ W(w—l— ,luzr’
(2)

P,
, z)ﬂdw di,

a7’
(=5
where P, is the total area of the grating, Py
is the area common to two pupils displaced
relatively each other, 1 the wavelength of

(1)
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Fig. 1.

light and 7' the distance between grating
vertex and image plane. Namioka*' reported
that the intensity distribution of the point
image in the horizontal direction w is hardly
affected by integration related to /. Accord-
ingly, the integration related to / is neglected
in the following calculation. Namely, we con-
sider only the bundle of rays originating from
the object point and lying on the Rowland
circle plane. Therefore, eq. (2) becomes
Dy)y=—+

. O
exp| ik W(w+ )
H —(H—2vr’)[2 p|: { 2

S 3

where H represents the grating width.

The wave-front aberration W is defined as
the optical distance between a real wave-front
and the reference sphere. The relation be-
tween ray aberration and wave-front aberra-
tion has been given by Hopkins.” Let the
ideal image point by the grating be the center
of reference sphere which passes through the
grating vertex, then the radius of reference
sphere is equal to #'. Therefore, the ray aber-
ration 4p is given by

1 S+(I~I—2w‘ )2

vt

a4
cos 8 ow

where 8 is the diffraction angle of the prin-
cipal ray. According to Beutler, on the other
hand, the derivative of the light path func-
tion F with respect to w, that is 9F/ow, cor-
responds to the angle between the ray through
the ideal image point and that of the real one.

z,
Coordinate system for a grating spectrometer.
represents the region of integration which is common to two pupils
displaced relatively each other.

The shaded portion

Thus, the ray aberration of grating is given
by
oF
dp=R—.
b o (5)

If the light path function for the principal
ray is denoted by F\, we obtain

We=—(F—F,). (6)

The light path function of spectrometer
with a long slit was given by Miyake and
Katayama® as

]~ fane(+ 2) "4, 7,5)
()
()R ae
S ()
()2
) T )
(e L)
(G e ()]
__.;_(1”, 2, Byt

2 3 4
_—_alw+a2w +agw +d4w +eee y

(7)

where z is the coordinate along the entrance
slit, i.e. the height of the object point and 2’
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is the corresponding height of image point,
d the grating constant, m the diffraction order
and R the radius of curvature of the concave
grating. Substituting (7) into (3) and intro-
ducing s'=17'v/2, we have
$(w)=W(w+s")—Ww—s')
:A0+A1W+A2W2+A3W3+ e (8)
The coefficients A; are given by
A0=25/(a1+03512)
A1=48/(612+204S/2)
A2:6a3sl
A3:804S,

And finally we obtain

1 ((H2=s") .
D(v):—S exp ikg(w)dw .
H J_taj-s)

If an error smaller than the wavelength is
tolerable, it is found that the terms in (7)
higher than the fifth order in w can be neg-
lected. Thus, the terms in (8) up to the third
order must be retained.

(10)

2-2  Linear approximation of ¢(w)

The exponential part of integrand of (10)
is a complex function of the third order, and
the integration of this type is analytically
difficult. Therefore, the following approxima-
tion is introduced. :

The surface of the grating is divided into
many strips of width dw. In each strip, ¢(w)
is replaced by an equation of straight line
tangent to ¢(w), and the integration is per-
formed by a trapezoidal approximation. Ste-
phan® calculated the intensity distribution of
a point image by a similar method. The
value of width 4w is determined by the re-
quirement that the difference between ¢(w)
and its tangent ¢, (w) at w must remain below
a tolerance limit e¢. This value of ¢ is de-
termined in advance by a separate experiment.
At the lower edge w; of one divided range,
the following condition is derived from the
above requirement |¢(w;+dw)—¢r(w;+dw)|=
&

| Asdw® +(As+3Asw;) 4w’ | = . (11)

The value of 4w is determined from this
equation of the third order in 4w. Among
the possible solutions, that of positive and
minimum magnitude is automatically selected
by the computer as 4w. The value of integral
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4D; performed in this range is

wj+A

4Dj(»)= S " exp k(¢! (w;)(w—w;)

b

+d(w;)]dw=Re;+iIm;, (12)

where Re; and Im; are

Re; [sin ké(w; -+ Aw)—sin kd(w;)]

1
kg (w;)
1

= wy) [cos kp(w;)—cos kp(w;+dw)]

Innj
13)

Therefore, the modulus |D(v)| and phase angle
0 of the OTF are given as
DO =12 Reyf +(3 Im,)'1”
J J

tan §=(3; Im;)/(Z Re;)
J M

(14)

respectively.

2-3  Preliminarvies for diffevent types of mount-
ing

In this treatise, the OTFs of two types of
mounting are studied. One is the Eagle mo-
unting which has good imaging properties
and the other is the Seya-Namioka mounting
which is convenient for use in the vacuum
ultraviolet. These mountings were studied
in the previous work” from the geometric-
optical standpoint.

Let a« and 8 be the incident and diffracted
angle respectively, » and #' be the distances
from grating vertex to entrance and exit slits
respectively. The conditions

2 sin a=mi/d }

15
r=7'=Rcosa (15)

are fulfilled by the Eagle mounting. And the
Seya-Namioka mounting satisfies the condi-
tion
e —2cosa,sin C
" sin Bo(cos ay+cos B,)—sin C
S = 2 cos B, sin C
" sin ay(cos ap+cos By)+sinC T

, (16

where a, and B, are the incident and diffract-
ed angle at the center of the intended spect-
ral range, and C=a,—f,. The incident angle
for the principal ray of any wavelength is
given as

Sin a:L[m_l_l_

sinC
> = {2(1+ cos C)

d 1+ cos
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IBM 360 system is employed to calculate
after the above scheme. First, the mounting
parameters «, 8, » and 7' for various 2 and
z are determined; next a; are determined.
Then, dw;, ¢(w;) and 4Dj(v) are computed for
a given frequency v. The same procedure is
repeated until the whole grating width is co-
vered. The computation time to get one curve
of the OTF does not exceed one minute even
if the type of mounting and the width of grat-
ing are different. It is less than the time
needed to calculate the OTF by a method of
geometrical optics adopted in the previous
work.

§3. Results of Computation

Specification of the grating adopted in com-
putation is as follows: Radius of curvature,
R=50 mm; grating constant, d=1/600 mm; or-
der of diffraction, m= -+1; grating width, H=
20 mm and 50 mm.

The first problem is to determine the value
of ¢ tolerable to the linear approximation of
é(w). Figure 2 shows the values of OTFs for

1LO—

v
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(a)
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05— 100

[ 1
100 50 0R ¢
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Fig. 2. Values of OTF for various tolerance limits
¢ and spatial frequencies v in the case of H=
50 mm, z=5mm and 2=5461A. (a) gives the re-
sults for Seya-Namioka mounting, (b) gives those
for Eagle mounting.
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various . They do not change for ¢<100A
in the Seya-Namioka mounting, and they are
almost constant for all values of ¢ adopted in
the Eagle mounting. Therefore the value of ¢
is fixed at 100A in all computations. Figure 3
shows an example of the state of lineariza-
tion of &(w).

Fig. 3. Results of linearization of ¢(w) in the Seya-
Namioka mounting when ¢=100A.

The results of the OTF computed by wave
optics for the Eagle mounting are shown in
Fig. 4. The curve of the OTF shows the
following characteristics. With an increase
of the grating width, the OTF at the best
focal plane extends to higher spatial frequency,
but it begins to decrease at lower spatial fre-
quency with an introduction of defocus. This
results from the following reason. The Eagle
mounting satisfies the Rowland condition at
the best focus and has little aberration. In
this condition the OTF is substantially de-
termined by diffraction, but as the amount
of aberration increases rapidly with defocus,
the OTF is principally determined by aber-
ration.

The OTFs for different wavelengths 1 are
also represented in the figure. The OTF at
the best focal plane for a shorter wavelength
extends to higher spatial frequency, although
it changes little with wavelength at the de-
focused plane. This result can be understood
as follows. At the best focus, the point image
reduces in size with decrease of wavelength,
but at the defocused plane, the effect of aber-
ration predominates that of diffraction and
the difference due to the wavelength becomes
negligible.

The results of computation for the Seya-
Namioka mounting are given in Fig. 5. It
is noted that the OTF at the best focal plane
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(a)

Ar=0Omm
z = Omm

T/2r- =546

-vr/zl—

(b)

Fig. 4. Modulus and phase of OTFs for Eagle
mounting. The full and dotted lines represent
OTF when the grating width H=20mm and H
=50mm respectively. 4r denotes the amount of
defocus.

shows an aspect contrary to that of the Eagle
mounting, that is, with a decrease of the grat-
ing width, it extends to higher spatial fre-
quency. However, at the defocused plane,
it shows a behavior similar to the Eagle mount-
ing. The situation at the best focus comes
from the fact that the Rowland condition is
not satisfied by the Seya-Namioka mounting
for the reason of practical convenience, and
there is a considerable amount of aberration
even at the best focus. Then, the aberration
rather than diffraction has a predominant in-
fluence on the OTF. The situation at the
defocused plane can be explained in same way
as in the Eagle mounting.

The OTFs for different object heights are
not shown for both mountings, because no
remarkable change of the OTFs does appear.

Figures 6 and 7 show the comparison be-
tween the OTFs calculated by the wave op-
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—vr/z}—
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(b)
Fig. 5. Modulus and phase of OTFs for Seya-
Namioka mounting. The full and dotted lines

represent OTF when H=20mm and H=50mm
respectively. 4r denotes the amount of defocus.

-T/2

tical and the geometric-optical method. When
the grating width increases, the curves ob-
tained by both methods have a tendency to
become more coincident with each other. This
result is reasonable because the approxima-
tion of the geometrical optics holds when a
system has a considerable amount of aber-
ration or an influence of diffraction can be
neglected. The same situation is also found
in the case of defocus, in which the agree-
ment is better than at the best focus. But
the OTF obtained by the geometrical optics
possesses noticeable errors when aberration
is small or the spatial frequency is high.
Therefore, the computation of the OTF should
be carried out by the wave optics in the Eagle
mounting which has a small amount of aber-
ration. Moreover, the same conclusion can
be derived for the Seya-Namioka mounting,
when the OTF is calculated at a considerably
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(d)
Fig. 6. Comparison of OTF based on wave optics
(full line) and that on geometrical optics (dotted
line) for Eagle mounting.

high spatial frequency.

§4. OTF as Fourier Transformation of Point
Image

To check the above results, the OTF is
calculated by the Fourier transformation of
the intensity distribution of a point image.
The intensity distributions of spectrometer
image have been given by Stephan ef al.”’ or

" by Namioka® for the Seya-Namioka mounting.
Their results are transcribed in Fig. 8 (a) and
(b) as full lines. According to their data,
grating parameters are R=1000mm, d=1/
600 mm, C=70°15" and m=—1. The units of
the abscissae adopted in (a) and (b) correspond
to 42=0.4A and 47=0.0426A respectively.
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v L/mm
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Fig. 7. Comparison of OTF based on wave optics
(full line) and that on geometrical optics (dotted
line) for Seya-Namioka mounting.
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H=60mm
A =57264

1515

H=20mm

(a)

Fig. 8. Intensity distribution of point image for Seya-Namioka mounting (full line) and

its approximation by superposition of many Gaussian functions (dotted line).

are transcribed from the ref. 5) and 4).

These units in wavelength correspond to du=
14.5¢ and 42=1.33y respectively in the trans-
verse distance at the image plane by the equa-
tion du=7+"48=myr"43/d cos B.

A large number of intensity maxima are
observed in the intensity distribution, and we
represent them as a superposition of many
Gaussian functions, each of which has the
same half width and the maximum intensity
as given in the literatures. The dotted lines
in Fig. 8(a) and (b) represent the curves plot-
ted by using this approximation.

The Fourier transformation of the sum of
the Gaussian functions shifted laterally by

/2

-rr2b

Fig. 9. Comparison of OTF by an autocorrelation
of pupil function (full line) and OTF by Fourier
transformation of intensity distribution of point
image (dotted line).

#, from the origin, f(x)= I, exp[—h.(x+
u,)’], is given by F)=X (/7 L/hs)exp[—
{(av/h,)*+27iu,w}]. Then the OTF is given by

(b)

Full lines

o1

9 -8 7T % -5 4 3 =2 o T U

=)

Fig. 10. Envelope of intensity maxima in Fig. 8
(a) (full line), and rewritten curve of the full
line by the superposition of three Gaussian func-
tions.

= -

-T/2

Fig. 11. OTFs obtained from the approximated
curve of intensity distribution in Fig. 9 (full line)
and from the exact curve in Fig. 8 (a) (dotted
line).

[FW)|=[{ZIn/ha) exp [—(zv/R,)’] cOS 2nue,v)*
H L (Lu/ha) exp [—(zv/ha)"]
X sin 2xu,0)° 121 32 (Lo To)- (18)
Figure 9 shows a comparison of the OTF ob-

tained from (18) and from (10). As there are
some differences in the values of H, 2 and C
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between the data, and as the errors are in-
troduced in reproduction of the small original
curves of intensity distributions, the results
are plausible. The discrepancy of phase is
due to the opposite sign of diffraction order.

The full line in Fig. 10 represents an en-
velope of a large number of intensity maxima
included in Fig. 8, and the curve is rewritten
as the dotted line, which is obtained by a
superposition of three Gaussian curves. If
the intensity distribution can be approximat-
ed by this dotted line, the calculation becomes
much easier. Figure 11 shows the OTF cal-
culated by this approximation, and there is
little difference between the curves with and
without approximation. Therefore, when the
OTF is obtained by the intensity distribution
of the point image, the approximation such

Tsuneo KATAYAMA and Akio TAKAHASHI

as Fig. 10 can be permitted.
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