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Signal Propagation: A Framework for Learning and
Inference In a Forward Pass

Adam Kohan, Edward A. Rietman, Hava T. Siegelmann

Abstract—We propose a new learning framework, signal prop-
agation (sigprop), for propagating a learning signal and updating
neural network parameters via a forward pass, as an alternative
to backpropagation. In sigprop, there is only the forward path
for inference and learning. So, there are no structural or
computational constraints necessary for learning to take place,
beyond the inference model itself, such as feedback connectivity,
weight transport, or a backward pass, which exist under back-
propagation based approaches. That is, sigprop enables global
supervised learning with only a forward path. This is ideal for
parallel training of layers or modules. In biology, this explains
how neurons without feedback connections can still receive a
global learning signal. In hardware, this provides an approach
for global supervised learning without backward connectivity.
Sigprop by construction has compatibility with models of learning
in the brain and in hardware than backpropagation, including
alternative approaches relaxing learning constraints. We also
demonstrate that sigprop is more efficient in time and memory
than they are. To further explain the behavior of sigprop, we
provide evidence that sigprop provides useful learning signals
in context to backpropagation. To further support relevance
to biological and hardware learning, we use sigprop to train
continuous time neural networks with Hebbian updates, and train
spiking neural networks with only the voltage or with biologically
and hardware compatible surrogate functions.

Index Terms—Local Learning, Neural Networks, Parallel
Learning, Optimization, Biological Learning, Neuromorphics

I. INTRODUCTION

THE success of deep learning is attributed to the backprop-
agation of errors algorithm [1] for training artificial neural

networks. However, the constraints necessary for backpropaga-
tion to take place are incompatible with learning in the brain
and in hardware, are computationally inefficient for memory
and time, and bottleneck parallel learning. These learning
constraints under backpropagation come from calculating the
contribution of each neuron to the network’s output error. This
calculation during training occurs in two phases. First, the input
is fed completely through the network storing the activations
of neurons for the next phase and producing an output; this
phase is known as the forward pass. Second, the error between
the input’s target and network’s output is fed in reverse order
of the forward pass through the network to compute parameter
updates using the stored neuron activations; this phase is known
as the backward pass.

These two phases of learning have the following learning
constraints. The forward pass stores the activation of every
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neuron for the backward pass, increasing memory overhead.
The forward and backward passes need to complete before
receiving the next inputs, thereby pausing resources. Network
learning parameters can only be updated after and in reverse
order of the forward pass, which is sequential and synchronous.
The backward pass requires its own feedback connectivity to
every neuron, increasing structural complexity. The feedback
connectivity needs to have weight symmetry with forward
connectivity, known as the weight transport problem. The
backward pass uses a different type of computation than
the forward pass, adding computational complexity. In total,
these constraints prohibit parallelization of computations during
learning, increase memory usage, run time, and the number of
computations, and bound the network structure.

These learning constraints under backpropagation are diffi-
cult to reconcile with learning in the brain [2], [3]. Particularly,
the backward pass is considered to be problematic [2]–[6]
as (1) the brain does not have the comprehensive feedback
connectivity necessary for every neuron (2) neither is neural
feedback known to be a distinct type of computation, separate
from feedforward activity and (3) the feedback and feedforward
connectivity would need to have weight symmetry.

These learning constraints also hinder efficient implementa-
tions of backpropagation and error based learning algorithms
on hardware [7], [8]: (1) weight symmetry is incompatible with
elementary computing units which are not bidirectional, (2)
the transportation of non local weight and error information
requires special communication channels in hardware, and (3)
spiking equations are non-derivable, non-continuous. Hardware
implementations of learning algorithms may provide insight
into learning in the brain. An efficient, empirically competitive
algorithm to backpropagation on hardware will likely parallel
learning in the brain.

All of these constraints can be categorized by their overall
effect on learning for a network as follows. (a) Backwardpass
unlocking would allow for all parameters to be updated in
parallel after the forward pass has completed. (b) Forward-
pass unlocking would allow for individual parameters to be
asynchronously updated once the forward pass has reached
them, without waiting for the forward pass to complete. These
categories directly reference parallel computation, but also have
implications on network structure, memory, and run-time. For
example, backwardpass locking implies top-down feedback
connectivity. Similar terminology was used in [9], where (a)
is backward locking and (b) is update locking. Alternative
learning approaches to address backwardpass and forwardpass
unlocking have been proposed, refer to Section II and Figure
1, but do not solve all of these constraints and are based on
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relaxing learning constraints under backpropagation.
We propose a new learning framework, signal propagation

(SP or sigprop), for propagating a learning signal and updating
neural network parameters via a forward pass. Sigprop has
no constraints on learning, beyond the inference model itself,
and is completely forwardpass unlocked. At its core, sigprop
generates targets from learning signals and then re-uses the
forward path to propagate those targets to hidden layers and
update parameters. Sigprop has the following desirable features.
First, inputs and learning signals use the same forward path, so
there are no additional structural or computational requirements
for learning, such as feedback connectivity, weight transport,
or a backward pass. Second, without a backward pass, the
network parameters are updated as soon as they are reached
by a forward pass containing the learning signal. Sigprop does
not block the next input or store activations. So, sigprop is
ideal for parallel training of layers or modules. Third, since
the same forwardpass used for inputs is used for updating
parameters, there is only one type of computation. Compared
with alternative approaches, sigprop addresses all of the above
constraints, and does so with a global learning signal.

Our work suggests that learning signals can be fed through
the forward path to train neurons. Feedback connectivity is not
necessary for learning. In biology, this means that neurons who
do not have feedback connections can still receive a global
learning signal. In hardware, this means that global learning
(e.g supervised or reinforcement) is possible even though there
is no backward connectivity.

This paper is organized as follows. In Section II, we detail the
improvements on relaxing learning constraints of sigprop over
alternative approaches. In Section III, we introduce the signal
propagation framework and learning algorithm. In Section
IV, we describe experiments evaluating the accuracy, run
time, and memory usage of sigprop. We also demonstrate that
sigprop can be trained with a sparse learning signal. In Section
V, we demonstrate that sigprop provides a useful learning
signal that becomes increasingly similar to backpropagation
as training progresses. We also demonstrate that sigprop can
train continuous time neural networks, and with a Hebbian
plasticity mechanism to update parameters in hidden layers,
as further support of its relevance to biological learning. In
Section VI, we demonstrate that sigprop directly trains Spiking
Neural Networks, with or without surrogate functions, as further
support of its relevance to hardware learning.

II. RELAXING CONSTRAINTS ON LEARNING

Signal propagation (sigprop) is a new approach that imposes
no learning constraints, beyond the inference model itself, while
providing a global learning signal. Alternative approaches, in
contrast, are based on relaxing the learning constraints under
backpropagation. This is a view by which we can arrive at
sigprop: once the learning constraints under backpropagation
are done away with, the simplest explanation to provide a global
learning is to use the forward path, the path constructing the
inference model; that is, project the learning signal through the
same path as the inputs. Here, we discuss alternative approaches,
compare the variations of constraints they relax, and see the

difference of removing constraints entirely, which results in
the improvements shown under sigprop. Refer to Fig 1 for a
visual comparison.

Feedback Alignment (FA), Fig 1b uses fixed random weights
to transport error gradient information back to hidden layers,
instead of using symmetric weights [10]. It was shown that the
sign concordance between the forward and feedback weights
is enough to deliver effective error signals [7], [11], [12].
During learning, the forward weights move to align with the
random feedback weights and have approximate symmetry,
forming an angle below 90◦. FA addresses the weight transport
problem, but remains forwardpass and backwardpass locked.
Direct Feedback Alignment (DFA), Fig 1c propagates the error
directly to each hidden layer and is additionally backwardpass
unlocked [13]. Sigprop improves on DFA and is forwardpass
unlocked. DFA performs similarly to backpropagation on
CIFAR-10 for small fully-connected networks with dropout,
but performs more poorly for convolutional neural networks.
Sigprop performs better than DFA and FA for convolutional
neural networks.

FA based algorithms also rely on systematic feedback
connections to layers and neurons. Though it is possible
[6], [10], [12], there is no evidence in the neocortex of the
comprehensive level of connectivity necessary for every neuron
(or layer) to receive feedback (reciprocal connectivity). With
sigprop, we introduce an algorithm capable of explaining how
neurons without feedback connections learn. That is, neurons
without feedback connectivity receive feedback through their
feedforward connectivity.

An alternative approach that minimizes feedback connectivity
is Local Learning (LL), Fig 1f. In LL algorithms [14]–[16],
layers are trained independently by calculating a separate
loss for each layer using an auxiliary classifier per layer. LL
algorithms have achieved performance close to backpropagation
on CIFAR-10 and is making progress on ImageNet. It trains
each layer and auxiliary classifier with backpropagation. At
the layer level, it has the weight transport problem and is
forwardpass and backwardpass locked. In [14], FA is used
to backwardpass unlock the layers. It does not use a global
learning signal, but learns greedily. In another approach,
Synthetic Gradients (SG), Fig 1g are used to train layers
independently [9], [17]. SG algorithms train auxiliary networks
to predict the gradient of the backward pass from the input,
the synthetic gradient. Similar to LL, SG methods trains the
auxiliary networks using backpropagation. Until the auxiliary
networks are trained, it has the weight transport problem and is
forwardpass and backwardpass locked at the network level. In
contrast, sigprop is completely forwardpass unlocked, combines
a global learning signal with local learning, is compatible with
learning in hardware where there is no backward connectivity,
and compatible with models of learning in the brain where
comprehensive feedback connectivity is not seen, including
projections of the targets to hidden layers.

Forwardpass unlocked algorithms do not necessarily address
the limitations in biological and hardware learning models,
as they have different types of computations for inference
and learning. In sigprop, the approach to having a single
type of computation for inference and learning is similar to
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target propagation. Target Propagation (TP), Fig 1d [18], [19]
generates a target activation for each layer instead of gradients
by propagating backward through the network. It requires
reciprocal connectivity and is forwardpass and backwardpass
locked. In contrast, sigprop generates a target activation at each
layer by going forward through the network. An alternative
approach, Equilibrium Propagation (EP) is an energy based
model using a local contrastive Hebbian learning with the
same computation in the inference and learning phases [6],
[20], [21]. The model is a continuous recurrent neural network
that minimizes the difference between two fixed points: when
receiving an input only and when receiving the target for error
correction. EP is closer to a framework, wherein symmetric
and random feedback (FA) weights work [22]. These models of
EP still require comprehensive connectivity for each layer and
are forwardpass locked. We demonstrate that sigprop works
in the EP framework without these problems, more closely
modeling neural networks in the brain.

Another approach that reuses the forward connectivity for
learning, as is we do in sigprop, is Error Forward Propagation,
Fig 1e [23]–[28]. Error forward propagation is for closed loop
control systems or autoencoders. In either case, the output of
the network is in the same space as the input of the network.
These works calculate an error between the output and input
of the network and then propagate the error forward through
the network, instead of backward, calculating the gradient
as in error backpropagation. Error forward propagation is
backwardpass locked and forwardpass locked. It also requires
different types of computation for learning and inference. In
contrast, sigprop uses only a single type of computation and
is backwardpass unlocked and forwardpass unlocked.

III. SIGNAL PROPAGATION

The premise of signal propagation (sigprop) is to reuse the
forward path to map an initial learning signal into targets at
each layer for updating parameters. The network is shown in
Fig. 2a; notice that training uses the same forward path as
inference, except that instead of only feeding the network the
input x, we also feed it c the learning signal. The learning
signal is some context c, e.g. the label in supervised learning.
The learning signal and the input can have different shapes,
e.g. a supervised label is a single integer and the input is an
image. The target generator projects the learning signal c and
the first hidden layer projects the input x to both have the same
shape (dense signal) or concordant shapes (sparse signal Sec
III-E) to be processed by the network, e.g. the target generator
projects the label to have the same shape as the input or even
the first hidden layer. After which, the forward pass during
training proceeds the same way as inference, except with x
and c as the new inputs instead of only the original input x.

We provide a framework for any given input x or learning
signal c, not only for supervised learning with labels. For
example, in regression tasks, the inputs x and outputs y
commonly have the same type and shape; so, by using the
output training targets y∗ as the learning signal c, the target
generator and first hidden layer can be the same (weight
sharing). Nonetheless, the focus here is supervised learning.

In the following sub-sections, we start with the general
training procedure III-A, then prediction for both training and
inference III-B, the loss for training III-C, and details of target
generators III-D.

A. Training

The forward pass starts with the input x, a learning signal c,
and the target generator. Assume the network has two hidden
layers, as shown in Figures 2a, where Wi and bi are weight and
bias for layer i. Let S1 and d1 be the weight and bias for the
target generator. The activation function f() is a non-linearity.
Let (x, y∗) be a mini-batch of inputs and labels of m possible
classes. We feed x into the first hidden layer to get h1. We
create a one-hot vector of each class cm, this is our learning
signal, and feed it into the target generator to get t1. Notice
that x and cm have different shapes. Now, h1 and t1 have the
same shape.

h1, t1 = f(W1x+ b1), f(S1cm + d1) (1)
[h2, t2] = f(W2[h1, t1] + b2) (2)
[h3, t3] = f(W3[h2, t2] + b2) (3)

The outputted t1 is a target for the output of the first hidden
layer h1. This target is used to compute the loss L1(h1, t1) for
training the first hidden layer and the target generator. Then,
the target t1 and the output h1 are fed to the next hidden layer.
The forward pass continues this way until the final layer. The
final layer and each hidden layer have their own losses:

J = L(h1, t1) + L(h2, t2) + L(h3, t3) (4)

where J is the total loss for the network. For hidden layers,
the loss L can be a supervised loss, such as Lpred Eq. 9 which
is used in Section IV. It can also be a Hebbian update rule,
such as Eq. 14 which is used in Section V. For the final layer,
the loss L is a supervised loss, such as Lpred Eq. 9.

In total, each layer processes its input and input-target to
create an output and output-target. The layer compares its
output with its output-target to update its parameters. In this
way, the layer locally computes its update from a global learning
signal. The layer then sends its output and output-target to the
next layer which will compute its own update. This processes
continues until the final layer has computed its update and
produces the network’s output (prediction). From this procedure
collectively, the network learns to process the input to produce
an output, and at the same time, learns to make an initial
learning signal into a useful training target at each hidden layer
and final layer. In other words, the network itself, which is the
forward path, takes on the role of the feedback connectivity
in producing a learning signal for each layer. This makes
sigprop compatible with models of learning where backward
connectivity is limited, such as in the brain and learning in
hardware (e.g. neuromorphic chips).

B. Prediction for Training and Inference

In training, the prediction y is formed by comparing the final
layer’s output h3 with its target t3 (Output Target) - Fig 2a. For
inference, the same procedure may be used if group targets,
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alignment and direct feedback alignment algorithms. FA based algorithms do not solve forwardpass locking and require additional connectivity. d) target
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through the network instead of sent directly to or formed at each hidden layer. Networks) The light grey arrows indicate the feed forward path. Dark grey
arrows indicates error gradient or target paths. If the dark grey arrow pass through a layer, the weights are not trained by the error gradient or target. Dotted
lines indicate the weights are not trained. Double lines, light or dark grey, are forwarding the context c or state hi, without modification. Double arrows indicate
going through one or more intermediate hidden layers. Wi and Si are trained weights and Bi are fixed random weights. There are versions of these models
where Bi is trained to be the transpose of Wi. The loss function is L and takes the output of the previous layer and possibly some target y∗ when unspecified.
The target generator layer S1 generates the initial training target ti from a learning signal, which is some privileged information or context c, usually the label
in supervised learning. The gradient is δ and the synthetic gradient is δ̂. Auxiliary networks are represented by the double arrows going into ai and δ̂i.

such as class labels, are available. However, no target of any
kind is needed for inference - Fig 2b. Instead, a classification
layer may be used with no effect on performance (Classification
Layer) Fig 2b. In general, the last layer may be any type of
prediction layer, such as a classification layer or the output
layer for regression tasks. With a prediction layer, inference
for classification, regression, or any task proceeds as usual,
without using a target. We describe both version of sigprop
below.

Output Target, Fig 2a: The network’s prediction y at the
final layer is formed by comparing the output h3 and outputted
target t3 (Fig 2a):

y = y3 = O(h3, t3) (5)

where O is a comparison function. Two such comparison
functions are the dot product and L2 distance. We use the less
complex Odot,

Odot(hi, ti) = hi · tTi (6)

Ol2(hi, ti) =
∑
k

||ti[i, 1, k]− hi[1, j, k]||22 (7)

but both versions give similar performance using the losses in
Section III-C. Each hidden layer can also output a prediction,

these are known as early exits (faster responses from earlier
layers during inference):

y = yi = O(hi, ti) (8)

Classification Layer, Fig 2b: The final layer of the network
may be replaced with the standard output layer used in neural
networks, e.g. the classification layer for supervised learning, as
shown in Fig 2b. This simplifies predictions during inference,
matching standard neural network design. In this case, the
learning signal c (e.g. labels in supervised learning) would be
projected to the final layer of the network, as per standard
training of networks. The target t3 is no longer used during
inference to form y, so neither is the context generator.

C. Training Loss

In sigprop, losses compare neurons with themselves over
different inputs and with each other. The Lpred is the basic
loss we use.

Prediction Loss: The prediction loss is a cross entropy loss
using a local prediction, Eq 8. The local prediction is from a
dot product between the layer’s local targets ti and the layer’s
output hi. Given a hidden layer’s local targets ti = (t1i , . . . , t

m
i )
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and a size n mini-batch of outputs hi = (h1i , . . . , h
n
i ) of the

same hidden layer:

Lpred(hi, ti) = CE(y∗i ,−Odot(hi, ti)) (9)

where hi and ti have the same size output dimension. The
cross entropy loss (CE) uses y∗i , which is a reconstruction of
the labels y∗ at each layer i from the positional encoding of
the inputs x and context cm., starting from the activations h1
and targets t1 formed at the first hidden layer. In particular,
we form a new batch [h1, t1] by interleaving h1 and t1 such
that each sample’s activations in h1 is concatenated after its
corresponding target t1. Then, at each layer i, we assign a
label for each sample hij depending on which target tik the
sample came after, where 0 ≤ k < j. Many different encodings
are available, depending on the task and target generator. An
alternative is to use the approach in Section V which merges
the context c, and therefore generated targets t1, with the inputs
x to form a single combined input xt, an input-target III-D, and
then either compares them with each other or uses an update
rule over multiple iterations. The second option is natural for
continuous networks where multiple iterations (e.g time steps)
can support robust update rules.

D. Target Generators

The target generator takes in a learning signal as some
context c to condition learning on and then produces the
initial target, which is fed forward through the network to
produce targets at each hidden layer. There are many possible
formulations of the target generator, such as: fixed or learned,
projecting to input or first hidden layer, and sharing weights
with the first hidden layer. We recommend deciding based
on the task, selected learning signal(s), and implementation
constraints. For example, in segmentation tasks where outputs
have the same shape as the inputs, we can use the output
training segmentation targets for the learning signal and have
the target generator share weights with the first hidden layer. We
describe three formulations below to address different learning
scenarios, particularly hardware constrained, continuous, and
spike-time learning.

Target-Only, Fig 2a,b: This is the version described in
Eq. 1 and conditions only on the class label. This version
of the target generator can interfere with batch normalization
statistics as h1 and t1 do not necessarily have similar enough
distribution. Batch normalization statistics may be disabled or
be put in inference mode when processing the targets, therefore
only collecting statistics on the input.

Target-Input, Fig 2a,b: Another context we condition on
is the class label and input. We feed a one-hot vector of the
labels y∗m through the target generator to produce a scale and
shift for the input. We take the scaled and shifted output as
the target for the first hidden layer.

t1 = h1f(S1cm + d1) + f(S2cm + d2) (10)

The target t1 is now more closely tied to the distribution of
the input. We found that this formulation of the target works
better with batch normalization. Even though this version has

similar performance to Eq. 1, it increases memory usage as
each input will have its own version of the targets.

Target-Loop, Fig 2c: The last option is to incorporate a
form of feedback. The immediate choice is to condition on the
activations of the predictions y3 and labels y∗m,

t1 = f(S1y3 + S1y
∗
m + d1) (11)

or using the final layer’s output and error e3 with the target t3
to correct it

t1 = f(S1(h3 − ηe3) + d1) (12)

, f(S1(h3 − η
dL

dh3
) + d1)

where η controls how much error e3 to integrate. We use it in
Section V for continuous networks.

E. Sparse Learning

Sigprop can be a form of sparse learning. We reformulate the
target generator to produce a sparse target, which is a sparse
learning signal. We make the targets ti as sparse as possible
such that at minimum, they can still be taken with each layer’s
weights Wi, via a convolution or dot-product, and then fed-
forward through the network. To make the target sparse, we
reduce the output size of Si in the target generator. We use
sparse learning throughout this paper, except when otherwise
written.

For convolutional layers, the output size of Si is made the
same size as the weights. For example, let there be an input
of 32x28x28 and a convolutional hidden layer of 32x16x3x3,
where 32 is the in-channels, 28x28 is the width and height
of the input, 16 is the out-channels, and 3x3 is the kernel.
The dense target’s shape is 32x28x28. In contrast, the sparse
target’s shape is reduced to 10x32x3x3. As a result, even
though convolutional layers have weight sharing, there is no
weight sharing when convolving with a sparse target.

For fully connected layers, the output size of Si is made
smaller than input size of the weights. For example, let there
be an input of 1024 and a fully connected hidden layer of
1024x512 features. The dense target’s shape would be 1024. In
contrast, the sparse target’s shape is < 1024. Then, we resize
the target to match the layer input size of 1024 by filling it
with zeros. With the sparse target, the layer is no longer fully
connected.

IV. EXPERIMENTS

We compare sigprop (SP) with Feedback Alignment (FA) and
Local Learning (LL). We also show results for backpropagation
(BP) as reference. The models are shown in Figure 1. FA uses
fixed random weights to transport error gradient information
back to hidden layers, instead of using symmetric weights.
For LL, we show results for two model versions. The first
uses BP at the layer level (LL-BP), and the second uses FA in
the auxiliary networks to have a backpropagation free model
that relaxes learning constraints under backpropagation (LL-
FA). LL-FA performs better than using FA or DFA alone. We
use LL-BP and LL-FA with predsim losses on the VGG8b
architecture [14]. We trained several network on the CIFAR-10,
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target t3 is no longer needed to make predictions, so the context c and target
generator are not used. c) This is the version of sigprop used in Sections V for
the continuous rate model. The classification layer feeds back into the input
layer creating a feedback loop, so y is the context c: y = c. This feedback
loop allows the target of hidden layers earlier in the network to incorporate
information from hidden layers later in the network without incurring the
overhead of reciprocal feedback to every neuron. Continuous networks have
multiple iterations which is ideal for this version of sigprop. The other versions
of sigprop may also be used.

Fig. 3. Training in sigprop (SP). The learning signals c and inputs x are
fed into the network. Then, each layer successively brings the learning signal
5 : [1, 0] closer to the images of 5, but farther away from learning signal
7 : [0, 1] and images of 7. The same is done for 7. Before the first layer 1),
the images and learning signal of the same class are not closer to each other
than to other classes. In the first layer 2), we nudge 5 : [1, 0] and the image
of 5 closer; the same for 7. This continues in the following layer 3) and then
the final layer 4), at which point the learning signal and inputs of the same
class are close each other, but farther from the other class. In general, each
layer successively bring inputs x and there respective learning signals c closer
together than all other inputs and learning signals.

CIFAR-100, and SVHN datasets. We used a VGG architecture.
The experiments were run using the PyTorch Framework. All
training was done on a single GeForce GTX 1080. For each
layer to have a separate loss, the computational graph was
detached before each hidden layer to prevent the gradient
from propagating backward past the current layer. The target
generator was conditioned on the classes, producing a single
target for each class.

Results for BP, LL-BP, LL-FA, and SP A batch size of 128
was used. The training time was 100 epochs for SVHN, and
400 epochs for CIFAR-10 and CIFAR-100. ADAM was used

for optimization [29]. The learning rate was set to 5e− 4. The
learning rate was decayed by a factor of .25 at 50%, 75%, 89%,
and 94% of the total epochs. The leaky ReLU activation with
a negative slope of 0.01 was used [30]. Batch normalization
was applied before each activation function [31] and dropout
after. The dropout rate was 0.1 for all datasets. The standard
data augmentation was composed of random cropping for all
datasets and horizontal flipping for CIFAR-10 and CIFAR-100.
The results over a single trial for VGG models.

The CIFAR-10 dataset [32] consists of 50000 32x32 RGB
images of vehicles and animals with 10 classes. The CIFAR-
100 dataset [32] consists of 50000 32x32 RGB images of
vehicles and animals with 100 classes. The SVHN dataset [33]
consists of 32x32 images of house numbers. We use both the
training of 73257 images and the additional training of 531131
images.

A. Efficiency

We measured training time and maximum memory usage
on CIFAR-10 for BP, LL-BP, LL-FA, and SP. The version of
SP used is 2b with the Lpred loss. The results are summarized
in Table I. LL and SP training time are measured per layer as
they are forwardpass unlocked and layers can be updated in
parallel. However, BP is not forwardpass unlocked, so layers
are updated sequentially and is therefore necessarily measured
at the network level. Measurements are across all seven layers,
which is the source of the high variance for LL and SP, and
over four hundred epochs of training. To ensure training times
are comparable, we compare the epochs at which SP, LL, and
BP converge toward their lowest test error. We also include
the first epochs that have performance within 0.5% of the
best reported performance. All learning algorithms converge
within significance of their best performance around the same
epoch. Given efficiency per iteration, SP is faster than the other
learning algorithms and has lower memory usage.

The largest bottleneck for speed of LL and SP is successive
calls to the loss function in each layer. Backpropagation only
needs to call the loss function once for the whole network;
it optimizes the forward and backward computations for all
layers and the batch. SP and LL would benefit from using a
larger batch size than backpropagation. The batch size could be
increased in proportion to the number of layers in the network.
This is only pragmatic in cases where memory can be sacrificed
for more speed (e.g. not edge devices). We also provide per
layer measurements in Tables II. At the layer level, SP remains
faster and more memory efficient than LL and backpropagation.
It is interesting to note that LL and SP tend to be slower and
faster in different layers even though both are using the same
architecture. For memory, SP uses less memory than LL and
BP regardless of the layer. However, there is a general trend for
LL and SP: the layers closer to the input have more parameters,
so are slower and take up more memory then layers closer to
the output.

B. Sparse Local Targets

We demonstrate that sigprop (SP) can train train a network
with a sparse learning signal. We use the larger VGG8b(2x)
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TABLE I
THE TRAINING TIME PER SAMPLE AND MAXIMUM MEMORY USAGE PER BATCH OVER ALL LAYERS FOR VGG8B

Backprop Alternative
BP LL-BP LL-FA SP

Time (s) CIFAR-10 12.29± 0.02 8.11± 14.40 8.50± 29.86 5.91± 7.40
CIFAR-100 15.34± 1.45 10.20± 28.98 9.44± 28.63 6.25± 7.33
SVHN 148.70± 2.23 95.51± 3617.90 89.32± 1767.26 69.74± 1048.54

Mem (MiB) CIFAR-10 22.00± 0.00 8.85± 8.06 13.03± 10.61 6.19± 1.57
CIFAR-100 27.16± 0.38 11.45± 106.02 5.51± 23.17 5.19± 16.72
SVHN 28.04± 2.68 11.41± 106.03 5.43± 23.04 4.91± 16.54

Best Epoch CIFAR-10 319(198) 266(164) 309(201) 313(207)
CIFAR-100 350(306) 380(209) 339(264) 329(219)
SVHN 98(11) 41(7) 93(23) 88(34)

Test Error (%) CIFAR-10 5.99 5.58 9.02 8.34
CIFAR-100 26.20 29.31 38.41 34.30
SVHN 2.19 1.77 2.55 2.15

TABLE II
THE TRAINING TIME PER SAMPLE AND MAXIMUM MEMORY USAGE PER

BATCH PER LAYER ON CIFAR-10 FOR VGG8B

Backprop Alternative
Layer LL-BP LL-FA SP

Time (s)
1 7.16± 0.04 6.21± 0.03 4.48± 0.05
2 15.80± 0.07 15.15± 0.09 8.95± 0.15
3 9.27± 0.04 7.09± 0.02 10.13± 0.14
4 9.25± 0.30 18.40± 0.06 7.27± 0.25
5 4.93± 0.01 5.66± 0.04 4.71± 0.05
6 7.46± 0.01 3.93± 0.02 3.44± 0.02
7 2.90± 0.00 3.00± 0.00 2.36± 0.03

Mem (MiB)
1,6,7 6.12 10.98 5.67
2 14.50 18.18 9.26
3 9.70 18.18 5.67
4,5 9.70 10.97 5.67

architecture to leave more room for possible improvement
when using this sparse target. The version of sigprop is 2b
with the Lpred loss. We use the CIFAR10 dataset with the
same configuration as in Section IV. We see that the network’s
training speed increased and memory usage decreased Fig.
III,IV, with negligible change in accuracy.

V. IN CONTINUOUS TIME

We demonstrate that sigprop can train a neural model in
the continuous setting using a Hebbian update mechanism, in
addition to the discrete setting. Biological neural networks work
in continuous time, have no indication of different dynamics
in inference and learning, and use Hebbian based learning.
Sigprop improves learning in this scenerio by bringing a
global learning signal into Hebbian based learning, without
the comprehensive feedback connectivity to neurons and layers

TABLE III
EFFICIENCY OF TARGETS OVER ALL LAYERS ON CIFAR-10 FOR

VGG8B(2X). TRAINING TIME PER SAMPLE, MAXIMUM MEMORY USAGE
PER BATCH

Dense Sparse

Time (s) 14.48± 54.29 9.56± 29.02
Mem (MiB) 14.04± 6.39 10.74± 65.10
Best Epoch 273(207) 340(219)
Test Error (%) 7.60 7.71

TABLE IV
EFFICIENCY OF TARGETS PER LAYER ON CIFAR-10 FOR VGG8B(2X).
TRAINING TIME PER SAMPLE AND MAXIMUM MEMORY USAGE PER

BATCH

Layer Time s (Mem MiB)
Dense Sparse

1 12.85± 5.66 (12.99) 7.42± 0.79 (6.34)
2 21.51± 9.31 (20.23) 19.70± 0.18 (27.53)
3 18.81± 5.50 (13.02) 9.30± 0.39 (9.41)
4 25.30± 12.97 (13.02) 14.19± 0.12 (15.99)
5 9.69± 1.86 (13.02) 8.84± 0.11 (9.10)
6 8.11± 3.16 (13.02) 5.24± 0.08 (6.15)
7 5.06± 1.61 (12.99) 2.25± 0.07 (0.68)

that previous approaches require, not observed in biological
networks. In addition, sigprop improves compatibility for
learning in hardware, such as neuromorphic chips, which
have resource and design constraints that limit backward
connectivity.

In the model presented in this section, the target generator
is conditioned on the activations of the output layer to produce
a feedback loop - Fig. 2c. The feedback loop is always
active, during training and inference. With this feedback loop,
we demonstrate in section V-A that sigprop provides useful
learning signals by bringing forward and feedback loop weights
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into alignment. In Section V-B, we measured the performance
of this model on the MNIST and Fashion-MNIST datasets
[34], [35].

A. A Continuous Recurrent Neural Network Model
The learning framework, Equilibrium Propagation (EP),

proposed in [6] is one way to introduce physical time in deep
continuous learning and have the same dynamics in inference
and learning, avoiding the need for different hardware for each.
EP has been used with symmetric or random feedback weights.
We combine Sigprop with EP such that there are no additional
constraints on learning, beyond the Hebbian update. We trained
deep recurrent networks with a neuron model based on the
continuous Hopfield model [36]:

dsj
dt

=
dρ(sj)

dsj
(
∑
i→j

wijρ(si) +
∑

i∈O→j∈I
wijρ(si) + bj) (13)

− sj
rj
− β

∑
j∈O

(sj − dj)

where sj is the state of neuron j, ρ(sj) is a non-linear monotone
increasing function of it’s firing rate, bj is the bias, β limits
magnitude and direction of the feedback, O is the subset of
output neurons, I is the subset of input receiving neurons,
and dj is the target for output neuron j. The input receiving
neurons, sj ∈ I , are the neurons with forward connections from
the input layer. The networks are entirely feedforward except
for the final feedback loop from the output neurons si ∈ O to
the input receiving neurons sj ∈ I . All weights and biases are
trained. The weights in the feedback loop connections may be
fixed or trained. The output neurons receive the L2 error as an
additional input which nudges the firing rate towards the target
firing rate dj . The target firing rate dj is the one-hot vector
of the target value; all tasks in this section are classification
tasks.

The EP learning algorithm can be broken into the free phase,
the clamped phase, and the update rule. In the free phase, the
input neurons are fixed to a given value and the network is
relaxed to an energy minimum to produce a prediction. In the
clamped phase, the input neurons remain fixed and the rate of
output neurons sj ∈ O are perturbed toward the target value
dj , given the prediction sj , which propagates to connected
hidden layers. The update rule is a simple contrastive Hebbian
(CHL) plasticity mechanism that subtracts s0i s

0
j at the energy

minimum (fixed point) in the free phase from sβi s
β
j after the

perturbation of the output, when β > 0:

∆Wij ∝ ρ(si)
d

dβ
(ρ(sj)) ≈

1

β
ρ(s0i )(ρ(sβj )− ρ(s0j )) (14)

The clamping factor β allows the network to be sensitive to
internal perturbations. As β → +∞, the fully clamped state
in general CHL algorithms is reached where perturbations
from the objective function tend to overrun the dynamics and
continue backwards through the network.

B. Signal Propagation Provides Useful Learning Signals
We look at the behavior of our model during training

and how the feedback loop drives weight changes. Precise

symmetric connectivity was thought to be crucial for effective
error delivery [1]. Feedback Alignment, however, showed that
approximate symmetry with reciprocal connectivity is sufficient
for learning [10]–[12]. Direct Feedback Alignment showed that
approximate symmetry with direct reciprocal connectivity is
sufficient. In the previous sections, we showed that no feedback
connectivity is necessary for learning. Here, we conduct an
experiment to show that the same approximate symmetry is
found in sigprop.

We provide evidence that sigprop brings weights into
alignment within 90◦, known as approximate symmetry. In
comparison, backpropagation has complete alignment between
weights, known as symmetric connectivity. Note that this is not
a measure of approximation to backpropagation - sigprop is a
new and different approach; instead, this is a measure of the
quality of the learning signal in deeper layers, contextualized
by observations of learning with backpropagation, particularly
symmetry. In this experiment, the sigprop network architecture
forms a loop, so all the weights serve as both feedback and
feedforward weights. For a given weight matrix, the feedback
weights are all the weights on the path from the downstream
error to the presynaptic neuron. In general, this is all the
other weights in the network loop. The weight matrices in the
loop evolve to align with each other as seen in Fig. 4. More
precisely, each weight matrix roughly aligns with the product
of all the other weights in the network loop. In Fig. 4, the
weight alignment for a network with two hidden layers W1

and W2 and one loop back layer W3 is shown.
Information about W3 and W1 flows into W2 as

roughly W3W1, which nudges W2 into alignment with
the rest of the weights in the loop. From equation 14,
W2 ∝ ρ(~s02)(ρ(~sβ3 )− ρ(~s03)) where ~s2 ← ρ(~s1)W1, which
means information about W1 accumulates in W2. Similarly,
W1 ∝ ρ(~s01)(ρ(~sβ2 )− ρ(~s02)), except since the network archi-
tecture is a feedforward loop, ~s1 ← ρ(~s3)W3, which means
information about W3 accumulates in W1. The result is shown
in column c of the bottom row of Fig. 4, where a weight
matrix is fixed and the rest of the network’s weights come into
alignment with the fixed weight. Notice that W3W1 has the
same shape as WT

2 and serves as it’s ‘feedback’ weight.

C. Classification Results
We provide evidence that sigprop with EP has comparable

performance to EP with symmetric weights, and report the
performance results of the experiment in the previous section.
A two and another three layer architecture of 1500 neurons per
layer were trained. The two layer architecture was run for sixty
epochs and the three layer for one hundred and fifty epochs.
The best model during the entire run was kept. On the MNIST
dataset [34], the generalization error is 1.85− 1.90% for both
the two layer and three layer architectures, an improvement
over EP’s 2− 3%. The best validation error is 1.76− 1.80%
and the training error decreases to 0.00%. To demonstrate that
sigprop provides useful learning signals in the previous section,
we trained the network on the more difficult Fashion-MNIST
dataset [35]. The generalization error is 11.00%. The best
validation error is 10.95% and the training error decreases to
2%.
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Fig. 4. Signal Propagation updates bring weights into alignment within 90◦, approaching backpropagation symmetric weight alignment. Sigprop provide useful
targets for learning. The weight alignment for a network with two hidden layers W1 and W2 and one loop back layer W3 is shown. The weight matrices
form a loop in the network and come into alignment with each other during training on the Fashion-MNIST dataset. Each weight matrix aligns with the
product of the other two weights forming the network loop. Wxy]Wz means the angle between weight z and the matrix multiplication of the weights x
and y. Learned) The loop back layer is trained. However, even a fixed loop back layer reaches a similar angle of alignment. Layers) The loop back layer
converges before the 1st and 2nd hidden layers can. The 1st hidden layer is the least aligned with the 2nd hidden layer and the loop back layer because it is
dominated by the input signal. The alignment angles are taken for every sample and error bars are one standard deviation.

VI. SPIKING NEURAL NETWORKS

We demonstrate that sigprop can train a spiking neural
model with only the voltage (spike), and improves the hardware
compatibility of surrogate functions by reducing them to local
update rules. This is an improvement over backpropagation
based approaches as they: struggle to learn with only the
voltage; require going backward through non-derivable, non-
continuous spiking equations; and require comprehensive
feedback connectivity - all of which are problematic for
hardware and biological models of learning [8], [37], [38].

Spiking is the form of neuronal communication in biological
and hardware neural networks. Spiking neural networks (SNN)
are known to be efficient by parallelizing computation and
memory, overcoming the memory bottleneck of Artificial
Neural Networks (ANN) [39]–[41]. However, SNNs are are
difficult to train. A key reason is that spiking equations are
non-derivable, non-continuous and spikes do not necessarily
represent the internal parameters, such as membrane voltage
of the neuron before and after spiking [8]. Spiking also
has multiple possible encodings for communication when
considering time which are non-trivial, whereas artificial neural
networks (ANN) have a single rate value for communication
[8]. One approach to training SNNs is to convert an ANN
into a spiking neural network after training [42]–[44]. Another
approach is to have an SNN in the forward path, but have
a backpropagation friendly surrogate model in the backward
path, usually approximately making the spiking differentiable
in the backward path to update the parameters [8], [45], [46].

We trained SNNs with sigprop. The target is forwarded
through the network with the input, so learning is done before
the spiking equation. That is, we do not need to differentiate a
non-derivable, non-continuous spiking equation to learn. Also,
the SNN has the same dynamics in inference and learning and
has no reciprocal feedback connectivity. This makes sigprop
ideal for on-chip, as well as off-chip, training of spiking neural
networks. We measure the performance of this model on the
MNIST and Fashion-MNIST datasets.

A. Spiking Neural Network

We train a convolutional spiking neural network with
Integrate-and-Fire (IF) nodes, which are treated as activation
functions. The IF neuron can be viewed as an ideal integrator
where the voltage does not decay. The subthreshold neural
dynamics are:

vti = vt−1i + hti (15)

where vti is the voltage at time t for neurons of layer i and hti
is the layer’s activations. The surrogate spiking function for
the IF neuron is the arc tangent

g(x) =
1

π
arctan(πx) +

1

2
(16)

where the gradient is defined by

g′(x) =
1

1 + (πx)2
(17)

The neuron spikes when the subthreshold dynamics reach
0.5 for sigprop, and 1.0 for BP and Shallow models. All
models is simulated for 4 time-steps, directly using the
subthreshold dynamics. The SNN has 4 layers. The first two
are convolutional layers, each followed by batch normalization,
an If node, and a 2x2 maxpooling. The last two layers are
fully connected, with one being the classification layer. The
output of the classification layer is averaged across all four
time steps and used as the network output. ADAM was used for
optimization [29]. The learning rate was set to 5e− 4. Cosine
Annealing [47] was used as the learning rate schedule with the
maximum number of iterations Tmax set to 64. The models
are trained on the MNIST and Fashion-MNIST datasets for
64 epochs using a batchsize of 128. We use automatic mixed
precision for 16-bit floating operations, instead of the only the
full 32-bit. The reduced precision is better representative of
hardware limitations for learning. We use the classification
layer version of sigprop Fig. 2b.
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TABLE V
THE TEST ERROR FOR A SPIKING CONVOLUTIONAL NEURAL NETWORK.

BP SP
Surrogate Shallow Surrogate Voltage

Fashion-MNIST 6.70 16.42 9.51 10.68
MNIST 0.84 7.24 1.01 2.63

B. Results

We compare four spiking models on the MNIST and
Fashion-MNIST datasets - Table. V. The BP model propagates
backward through the spiking equations at each layer using
a differentiable surrogate. The Shallow model only trains the
classification layer. The SP Surrogate model uses the same
differentiable surrogate as BP does, but SP propagates forward
through the network and therefore does not need to go through
the spiking equation to deliver a learning signal. That is, the
parameter update and surrogate are before or perpendicular
to spiking, possibly as separate compartment. Finally, the SP
voltage model uses the neuron’s voltage (i.e. directly uses
the spiking equation) to calculate the loss and update the
parameters, no surrogate is used.

In contrast, BP based learning (without considerable modifi-
cations and additions) struggles when only using the voltage
for learning [37], [38]. A differentiable nonlinear function
estimating the spiking behavior (i.e. surrogate) is necessary
for reasonable performance in BP learning. A surrogate is
also necessary for sigprop to come close to BP surrogate
performance. Even without a surrogate, the SP Voltage model
is able to train the network significantly better than the Shallow
model. To the best of our knowledge, sigprop is the only
learning framework with a global supervised (unsupervised,
reinforcement) learning signal that satisfies requirements for
hardware (on-chip) learning [8], [48].

VII. DISCUSSION AND CONCLUSION

Alternative learning algorithms to backpropagation relax
constraints on learning under backpropagation, such as feedback
connectivity, weight transport, multiple types of computations,
or a backward pass. This is done to improve training ef-
ficiency, lowering time or memory, or enabling distributed
or parallel execution; and, to improve compatibility with
biological and hardware learning models. However, relaxing
constraints negatively impacts performance. So, alternatives
try varying relaxations or supplementary modifications and
additions in an attempt to retain the performance found under
backpropagation. For instance, the best performing and least
constrained alternative algorithm, LL-FA, uses a layer-wise
loss and random feedback to relax constraints, but adds layer-
wise auxiliary networks to retain performance. In contrast,
sigprop has no constraints on learning, beyond the inference
model, and without constraining (e.g. layer-wise) additions or
modifications.

We demonstrated that sigprop has faster training times and
lower memory usage than BP, LL-BP, and LL-FA. The reason
sigprop is more efficient than BP is clear, sigprop is forwardpass

unlocked while BP is backwardpass locked. For LL-BP and
LL-FA, sigprop is more efficient as it has fewer layers for
learning, it has no auxiliary networks. LL-BP has 2 auxiliary
layers for every hidden layer. LL-FA has 3 auxiliary layers for
every hidden layer. In Section IV-B, we showed that sparse
targets, which have a much smaller size than the hidden layer
outputs, are able to train the hidden layer as well as dense
targets, which have the same size as the hidden layer outputs.
A key feature of learning in the brain and biological neural
networks is sparsity. A small fraction of the neurons weigh
in on computations and decision making. It is encouraging
that sigprop is able to learn just as well with a sparse learning
signal.

In Section V, we applied sigprop to a time continuous
model using a Hebbian plasticity mechanism to update weights,
demonstrating sigprop has dynamical and structural compatibil-
ity with biological and hardware learning. With this continuous
model, we also showed that sigprop is able to provide useful
learning signals. While sigprop improves the performance of EP,
the Fashion-MNIST results demonstrate that there is room for
growth. One problem may be that the layers on the path from
the input to the output have their weight updates dominated by
the input, so are struggling to come into alignment with the
loopback layer. In future work, we will compensate to increase
alignment.

In Section VI, we demonstrated a key feature of sigprop not
seen in other global learning algorithms: sigprop does not need
to go through a non-derivable, non-continuous spiking equation
to provide a learning signal to hidden layers. This makes
sigprop ideal for hardware (on-chip) learning. Furthermore,
sigprop is able to train an SNN using spikes (voltage), which
backpropagation struggles to do, and at a reduced 16-bit
precision. So, no additional complex circuitry is necessary. This
makes on-chip global learning (e.g supervised or reinforcement)
more plausible with sigprop, whereas the complex neuron and
synaptic models of previous supervised learning algorithms
are impractical [8], [48]. This is in addition to sigprop not
having architectural requirements for learning and having the
same type of computation for learning and inference, which
on their own address hardware constraints restricting the use
of previous supervised learning algorithms [8], [48]. We are
working to implement sigprop on hardware neural networks.

We demonstrated signal propagation, a new learning frame-
work for propagating a learning signal and updating neural
network parameters via a forward pass. Our work shows that
learning signals can be fed through the forward path to train
neurons. In biology, this means that neurons who do not
have feedback connections can still receive a global learning
signal through their incoming connections. In hardware, this
means that global learning (e.g supervised or reinforcement)
is possible even though there is no backward connectivity.
At its core, sigprop re-uses the forward path to propagate a
learning signal and generate targets. With this combination,
there are no structural or computational requirements for
learning, beyond the inference model. Furthermore, the network
parameters are updated as soon as they are reached by a
forward pass. So, sigprop learning is ideal for parallel training
of layers or modules. In total, we presented learning models
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across a spectrum of learning constraints, with backpropagation
being the most constrained and signal propagation being the
least constrained. Signal propagation has better efficiency,
compatibility, and performance than more constrained learning
algorithms not using backpropagation.
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APPENDIX
ADDITIONAL RESULTS

TABLE VI
THE TEST ERROR FOR BP, FA, DFA, AND SP (BEST VS BP)

Dataset Network BP FA DFA SP

MNIST FC 2x800 1.60± 0.06 1.64± 0.03 1.74± 0.08 1.71± 0.03
3x800 1.75± 0.05 1.66± 0.09 1.70± 0.04 1.70± 0.04
4x800 1.92± 0.11 1.70± 0.04 1.83± 0.07 1.70± 0.04
2x800 DO 1.26± 0.03 1.53± 0.03 1.45± 0.07 1.38± 0.03

CIFAR-10 FC 3x1000 DO 42.20± 0.2 46.90± 0.3 42.90± 0.2 42.62± 0.16
CONV 22.50± 0.4 27.10± 0.8 26.90± 0.5 24.75± 0.40

CIFAR-100 FC 3x1000 DO 69.80± 0.1 75.30± 0.2 73.10± 0.1 70.30± 0.19
CONV 51.70± 0.2 60.50± 0.3 59.00± 0.3 57.01± 0.42

We trained several networks using BP, FA, DFA, and SP
on the MNIST, CIFAR-10, and and CIFAR-100. We used
fully-connected architectures (FC), and a small convolutional
architecture (CONV) architecture. Note, feedback alignment
based algorithms (FA and DFA) do not scale well; they are
combined them with LL, or another learning model, to achieve
reasonable performance.
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