
IEEETRANSACTIONSONNEURALNETWORKSANDLEARNINGSYSTEMS1

SignalPropagation:AFrameworkforLearningand
InferenceInaForwardPass

AdamKohan,EdwardA.Rietman,HavaT.Siegelmann

Abstract—Weproposeanewlearningframework,signalprop-
agation(sigprop),forpropagatingalearningsignalandupdating
neuralnetworkparametersviaaforwardpass,asanalternative
tobackpropagation.Insigprop,thereisonlytheforwardpath
forinferenceandlearning.So,therearenostructuralor
computationalconstraintsnecessaryforlearningtotakeplace,
beyondtheinferencemodelitself,suchasfeedbackconnectivity,
weighttransport,orabackwardpass,whichexistunderback-
propagationbasedapproaches.Thatis,sigpropenablesglobal
supervisedlearningwithonlyaforwardpath.Thisisidealfor
paralleltrainingoflayersormodules.Inbiology,thisexplains
howneuronswithoutfeedbackconnectionscanstillreceivea
globallearningsignal.Inhardware,thisprovidesanapproach
forglobalsupervisedlearningwithoutbackwardconnectivity.
Sigpropbyconstructionhascompatibilitywithmodelsoflearning
inthebrainandinhardwarethanbackpropagation,including
alternativeapproachesrelaxinglearningconstraints.Wealso
demonstratethatsigpropismoreefficientintimeandmemory
thantheyare.Tofurtherexplainthebehaviorofsigprop,we
provideevidencethatsigpropprovidesusefullearningsignals
incontexttobackpropagation.Tofurthersupportrelevance
tobiologicalandhardwarelearning,weusesigproptotrain
continuoustimeneuralnetworkswithHebbianupdates,andtrain
spikingneuralnetworkswithonlythevoltageorwithbiologically
andhardwarecompatiblesurrogatefunctions.

IndexTerms—LocalLearning,NeuralNetworks,Parallel
Learning,Optimization,BiologicalLearning,Neuromorphics

I.INTRODUCTION

T
HEsuccessofdeeplearningisattributedtothebackprop-
agationoferrorsalgorithm[1]fortrainingartificialneural

networks.However,theconstraintsnecessaryforbackpropaga-
tiontotakeplaceareincompatiblewithlearninginthebrain
andinhardware,arecomputationallyinefficientformemory
andtime,andbottleneckparallellearning.Theselearning
constraintsunderbackpropagationcomefromcalculatingthe
contributionofeachneurontothenetwork’soutputerror.This
calculationduringtrainingoccursintwophases.First,theinput
isfedcompletelythroughthenetworkstoringtheactivations
ofneuronsforthenextphaseandproducinganoutput;this
phaseisknownastheforwardpass.Second,theerrorbetween
theinput’stargetandnetwork’soutputisfedinreverseorder
oftheforwardpassthroughthenetworktocomputeparameter
updatesusingthestoredneuronactivations;thisphaseisknown
asthebackwardpass.

Thesetwophasesoflearninghavethefollowinglearning
constraints.Theforwardpassstorestheactivationofevery

AdamKohan,EdwardRietman,andHavaSiegelmannarewiththe
BiologicallyInspiredNeuralandDynamicalSystemsLaboratory,College
ofInformationandComputerSciences,UniversityofMassachusettsAmherst
(e-mail:akohan@cs.umass.edu,erietman@cs.umass.edu,hava@cs.umass.edu)

neuronforthebackwardpass,increasingmemoryoverhead.
Theforwardandbackwardpassesneedtocompletebefore
receivingthenextinputs,therebypausingresources.Network
learningparameterscanonlybeupdatedafterandinreverse
orderoftheforwardpass,whichissequentialandsynchronous.
Thebackwardpassrequiresitsownfeedbackconnectivityto
everyneuron,increasingstructuralcomplexity.Thefeedback
connectivityneedstohaveweightsymmetrywithforward
connectivity,knownastheweighttransportproblem.The
backwardpassusesadifferenttypeofcomputationthan
theforwardpass,addingcomputationalcomplexity.Intotal,
theseconstraintsprohibitparallelizationofcomputationsduring
learning,increasememoryusage,runtime,andthenumberof
computations,andboundthenetworkstructure.

Theselearningconstraintsunderbackpropagationarediffi-
culttoreconcilewithlearninginthebrain[2],[3].Particularly,
thebackwardpassisconsideredtobeproblematic[2]–[6]
as(1)thebraindoesnothavethecomprehensivefeedback
connectivitynecessaryforeveryneuron(2)neitherisneural
feedbackknowntobeadistincttypeofcomputation,separate
fromfeedforwardactivityand(3)thefeedbackandfeedforward
connectivitywouldneedtohaveweightsymmetry.

Theselearningconstraintsalsohinderefficientimplementa-
tionsofbackpropagationanderrorbasedlearningalgorithms
onhardware[7],[8]:(1)weightsymmetryisincompatiblewith
elementarycomputingunitswhicharenotbidirectional,(2)
thetransportationofnonlocalweightanderrorinformation
requiresspecialcommunicationchannelsinhardware,and(3)
spikingequationsarenon-derivable,non-continuous.Hardware
implementationsoflearningalgorithmsmayprovideinsight
intolearninginthebrain.Anefficient,empiricallycompetitive
algorithmtobackpropagationonhardwarewilllikelyparallel
learninginthebrain.

Alloftheseconstraintscanbecategorizedbytheiroverall
effectonlearningforanetworkasfollows.(a)Backwardpass
unlockingwouldallowforallparameterstobeupdatedin
parallelaftertheforwardpasshascompleted.(b)Forward-
passunlockingwouldallowforindividualparameterstobe
asynchronouslyupdatedoncetheforwardpasshasreached
them,withoutwaitingfortheforwardpasstocomplete.These
categoriesdirectlyreferenceparallelcomputation,butalsohave
implicationsonnetworkstructure,memory,andrun-time.For
example,backwardpasslockingimpliestop-downfeedback
connectivity.Similarterminologywasusedin[9],where(a)
isbackwardlockingand(b)isupdatelocking.Alternative
learningapproachestoaddressbackwardpassandforwardpass
unlockinghavebeenproposed,refertoSectionIIandFigure
1,butdonotsolvealloftheseconstraintsandarebasedon

arX
iv:2204.01723v2 [cs.L

G
] 17 N

ov 2022

IEEETRANSACTIONSONNEURALNETWORKSANDLEARNINGSYSTEMS12

APPENDIX
ADDITIONALRESULTS

TABLEVI
THETESTERRORFORBP,FA,DFA,ANDSP(BESTVSBP)

DatasetNetworkBPFADFASP

MNISTFC2x8001.60±0.061.64±0.031.74±0.081.71±0.03
3x8001.75±0.051.66±0.091.70±0.041.70±0.04
4x8001.92±0.111.70±0.041.83±0.071.70±0.04
2x800DO1.26±0.031.53±0.031.45±0.071.38±0.03

CIFAR-10FC3x1000DO42.20±0.246.90±0.342.90±0.242.62±0.16
CONV22.50±0.427.10±0.826.90±0.524.75±0.40

CIFAR-100FC3x1000DO69.80±0.175.30±0.273.10±0.170.30±0.19
CONV51.70±0.260.50±0.359.00±0.357.01±0.42

WetrainedseveralnetworksusingBP,FA,DFA,andSP
ontheMNIST,CIFAR-10,andandCIFAR-100.Weused
fully-connectedarchitectures(FC),andasmallconvolutional
architecture(CONV)architecture.Note,feedbackalignment
basedalgorithms(FAandDFA)donotscalewell;theyare
combinedthemwithLL,oranotherlearningmodel,toachieve
reasonableperformance.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2

relaxing learning constraints under backpropagation.
We propose a new learning framework, signal propagation

(SP or sigprop), for propagating a learning signal and updating
neural network parameters via a forward pass. Sigprop has
no constraints on learning, beyond the inference model itself,
and is completely forwardpass unlocked. At its core, sigprop
generates targets from learning signals and then re-uses the
forward path to propagate those targets to hidden layers and
update parameters. Sigprop has the following desirable features.
First, inputs and learning signals use the same forward path, so
there are no additional structural or computational requirements
for learning, such as feedback connectivity, weight transport,
or a backward pass. Second, without a backward pass, the
network parameters are updated as soon as they are reached
by a forward pass containing the learning signal. Sigprop does
not block the next input or store activations. So, sigprop is
ideal for parallel training of layers or modules. Third, since
the same forwardpass used for inputs is used for updating
parameters, there is only one type of computation. Compared
with alternative approaches, sigprop addresses all of the above
constraints, and does so with a global learning signal.

Our work suggests that learning signals can be fed through
the forward path to train neurons. Feedback connectivity is not
necessary for learning. In biology, this means that neurons who
do not have feedback connections can still receive a global
learning signal. In hardware, this means that global learning
(e.g supervised or reinforcement) is possible even though there
is no backward connectivity.

This paper is organized as follows. In Section II, we detail the
improvements on relaxing learning constraints of sigprop over
alternative approaches. In Section III, we introduce the signal
propagation framework and learning algorithm. In Section
IV, we describe experiments evaluating the accuracy, run
time, and memory usage of sigprop. We also demonstrate that
sigprop can be trained with a sparse learning signal. In Section
V, we demonstrate that sigprop provides a useful learning
signal that becomes increasingly similar to backpropagation
as training progresses. We also demonstrate that sigprop can
train continuous time neural networks, and with a Hebbian
plasticity mechanism to update parameters in hidden layers,
as further support of its relevance to biological learning. In
Section VI, we demonstrate that sigprop directly trains Spiking
Neural Networks, with or without surrogate functions, as further
support of its relevance to hardware learning.

II. RELAXING CONSTRAINTS ON LEARNING

Signal propagation (sigprop) is a new approach that imposes
no learning constraints, beyond the inference model itself, while
providing a global learning signal. Alternative approaches, in
contrast, are based on relaxing the learning constraints under
backpropagation. This is a view by which we can arrive at
sigprop: once the learning constraints under backpropagation
are done away with, the simplest explanation to provide a global
learning is to use the forward path, the path constructing the
inference model; that is, project the learning signal through the
same path as the inputs. Here, we discuss alternative approaches,
compare the variations of constraints they relax, and see the

difference of removing constraints entirely, which results in
the improvements shown under sigprop. Refer to Fig 1 for a
visual comparison.

Feedback Alignment (FA), Fig 1b uses fixed random weights
to transport error gradient information back to hidden layers,
instead of using symmetric weights [10]. It was shown that the
sign concordance between the forward and feedback weights
is enough to deliver effective error signals [7], [11], [12].
During learning, the forward weights move to align with the
random feedback weights and have approximate symmetry,
forming an angle below 90◦. FA addresses the weight transport
problem, but remains forwardpass and backwardpass locked.
Direct Feedback Alignment (DFA), Fig 1c propagates the error
directly to each hidden layer and is additionally backwardpass
unlocked [13]. Sigprop improves on DFA and is forwardpass
unlocked. DFA performs similarly to backpropagation on
CIFAR-10 for small fully-connected networks with dropout,
but performs more poorly for convolutional neural networks.
Sigprop performs better than DFA and FA for convolutional
neural networks.

FA based algorithms also rely on systematic feedback
connections to layers and neurons. Though it is possible
[6], [10], [12], there is no evidence in the neocortex of the
comprehensive level of connectivity necessary for every neuron
(or layer) to receive feedback (reciprocal connectivity). With
sigprop, we introduce an algorithm capable of explaining how
neurons without feedback connections learn. That is, neurons
without feedback connectivity receive feedback through their
feedforward connectivity.

An alternative approach that minimizes feedback connectivity
is Local Learning (LL), Fig 1f. In LL algorithms [14]–[16],
layers are trained independently by calculating a separate
loss for each layer using an auxiliary classifier per layer. LL
algorithms have achieved performance close to backpropagation
on CIFAR-10 and is making progress on ImageNet. It trains
each layer and auxiliary classifier with backpropagation. At
the layer level, it has the weight transport problem and is
forwardpass and backwardpass locked. In [14], FA is used
to backwardpass unlock the layers. It does not use a global
learning signal, but learns greedily. In another approach,
Synthetic Gradients (SG), Fig 1g are used to train layers
independently [9], [17]. SG algorithms train auxiliary networks
to predict the gradient of the backward pass from the input,
the synthetic gradient. Similar to LL, SG methods trains the
auxiliary networks using backpropagation. Until the auxiliary
networks are trained, it has the weight transport problem and is
forwardpass and backwardpass locked at the network level. In
contrast, sigprop is completely forwardpass unlocked, combines
a global learning signal with local learning, is compatible with
learning in hardware where there is no backward connectivity,
and compatible with models of learning in the brain where
comprehensive feedback connectivity is not seen, including
projections of the targets to hidden layers.

Forwardpass unlocked algorithms do not necessarily address
the limitations in biological and hardware learning models,
as they have different types of computations for inference
and learning. In sigprop, the approach to having a single
type of computation for inference and learning is similar to

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 11

across a spectrum of learning constraints, with backpropagation
being the most constrained and signal propagation being the
least constrained. Signal propagation has better efficiency,
compatibility, and performance than more constrained learning
algorithms not using backpropagation.

REFERENCES

[1] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning represen-
tations by back-propagating errors,” nature, vol. 323, no. 6088, p. 533,
1986.

[2] A. H. Marblestone, G. Wayne, and K. P. Kording, “Toward an inte-
gration of deep learning and neuroscience,” Frontiers in computational
neuroscience, vol. 10, p. 94, 2016.

[3] S. Grossberg, “Competitive learning: From interactive activation to
adaptive resonance,” Cognitive science, vol. 11, no. 1, pp. 23–63, 1987.

[4] F. Crick, “The recent excitement about neural networks.” Nature, vol.
337, no. 6203, pp. 129–132, 1989.

[5] J. H. Lee, T. Delbruck, and M. Pfeiffer, “Training deep spiking neural
networks using backpropagation,” Frontiers in neuroscience, vol. 10, p.
508, 2016.

[6] B. Scellier and Y. Bengio, “Equilibrium propagation: Bridging the
gap between energy-based models and backpropagation,” Frontiers in
computational neuroscience, vol. 11, p. 24, 2017.

[7] E. O. Neftci, C. Augustine, S. Paul, and G. Detorakis, “Event-driven ran-
dom back-propagation: Enabling neuromorphic deep learning machines,”
Frontiers in neuroscience, vol. 11, p. 324, 2017.

[8] M. Bouvier, A. Valentian, T. Mesquida, F. Rummens, M. Reyboz,
E. Vianello, and E. Beigne, “Spiking neural networks hardware im-
plementations and challenges: A survey,” ACM Journal on Emerging
Technologies in Computing Systems (JETC), vol. 15, no. 2, pp. 1–35,
2019.

[9] M. Jaderberg, W. M. Czarnecki, S. Osindero, O. Vinyals, A. Graves,
D. Silver, and K. Kavukcuoglu, “Decoupled neural interfaces using
synthetic gradients,” in International Conference on Machine Learning.
PMLR, 2017, pp. 1627–1635.

[10] T. P. Lillicrap, D. Cownden, D. B. Tweed, and C. J. Akerman, “Random
synaptic feedback weights support error backpropagation for deep
learning,” Nature communications, vol. 7, p. 13276, 2016.

[11] Q. Liao, J. Z. Leibo, and T. A. Poggio, “How important is weight
symmetry in backpropagation?” in AAAI, 2016, pp. 1837–1844.

[12] J. Guerguiev, T. P. Lillicrap, and B. A. Richards, “Towards deep learning
with segregated dendrites,” eLife, vol. 6, 2017.

[13] A. Nøkland, “Direct feedback alignment provides learning in deep neural
networks,” in Advances in neural information processing systems, 2016,
pp. 1037–1045.

[14] A. Nøkland and L. H. Eidnes, “Training neural networks with local error
signals,” in International Conference on Machine Learning. PMLR,
2019, pp. 4839–4850.

[15] E. Belilovsky, M. Eickenberg, and E. Oyallon, “Decoupled greedy
learning of cnns,” in International Conference on Machine Learning.
PMLR, 2020, pp. 736–745.

[16] J. Kaiser, H. Mostafa, and E. Neftci, “Synaptic plasticity dynamics for
deep continuous local learning (decolle),” Frontiers in Neuroscience,
vol. 14, p. 424, 2020.

[17] W. M. Czarnecki, G. Świrszcz, M. Jaderberg, S. Osindero, O. Vinyals,
and K. Kavukcuoglu, “Understanding synthetic gradients and decoupled
neural interfaces,” in International Conference on Machine Learning.
PMLR, 2017, pp. 904–912.

[18] D.-H. Lee, S. Zhang, A. Fischer, and Y. Bengio, “Difference target
propagation,” in Joint european conference on machine learning and
knowledge discovery in databases. Springer, 2015, pp. 498–515.

[19] Y. Bengio, “How auto-encoders could provide credit assignment in deep
networks via target propagation,” arXiv preprint arXiv:1407.7906, 2014.

[20] B. Scellier and Y. Bengio, “Equivalence of equilibrium propagation and
recurrent backpropagation,” arXiv preprint arXiv:1711.08416, 2017.

[21] X. Xie and H. S. Seung, “Equivalence of backpropagation and contrastive
hebbian learning in a layered network,” Neural computation, vol. 15,
no. 2, pp. 441–454, 2003.

[22] B. Scellier, A. Goyal, J. Binas, T. Mesnard, and Y. Bengio, “Extending
the framework of equilibrium propagation to general dynamics,” 2018.

[23] K. Hirasawa, M. Ohbayashi, M. Koga, and M. Harada, “Forward
propagation universal learning network,” in Proceedings of International
Conference on Neural Networks (ICNN’96), vol. 1. IEEE, 1996, pp.
353–358.

[24] R. J. Williams and D. Zipser, Gradient-based learning algorithms for
recurrent connectionist networks. Citeseer, 1990.

[25] Y. Ohama, N. Fukumura, and Y. Uno, “A forward-propagation rule for
acquiring neural inverse models using a rls algorithm,” in International
Conference on Neural Information Processing. Springer, 2004, pp.
585–591.

[26] ——, “A forward-propagation learning rule for neural inverse models
using a method of recursive least squares,” Systems and Computers in
Japan, vol. 36, no. 8, pp. 71–80, 2005.

[27] A. P. Heinz, “Pipelined neural tree learning by error forward-propagation,”
in Proceedings of ICNN’95-International Conference on Neural Networks,
vol. 1. IEEE, 1995, pp. 394–397.

[28] Y. Ohama and T. Yoshimura, “A parallel forward-backward propagation
learning scheme for auto-encoders,” in International Conference on
Neural Information Processing. Springer, 2017, pp. 126–136.

[29] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[30] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities
improve neural network acoustic models,” in Proc. icml, vol. 30, no. 1.
Citeseer, 2013, p. 3.

[31] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” in International conference
on machine learning. PMLR, 2015, pp. 448–456.

[32] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[33] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng,
“Reading digits in natural images with unsupervised feature learning,”
2011.

[34] Y. LeCun, “The mnist database of handwritten digits,” http://yann. lecun.
com/exdb/mnist/, 1998.

[35] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms,” arXiv preprint
arXiv:1708.07747, 2017.

[36] J. J. Hopfield, “Neurons with graded response have collective compu-
tational properties like those of two-state neurons,” Proceedings of the
national academy of sciences, vol. 81, no. 10, pp. 3088–3092, 1984.

[37] J. K. Eshraghian, M. Ward, E. Neftci, X. Wang, G. Lenz, G. Dwivedi,
M. Bennamoun, D. S. Jeong, and W. D. Lu, “Training spiking
neural networks using lessons from deep learning,” arXiv preprint
arXiv:2109.12894, 2021.

[38] S. R. Kheradpisheh and T. Masquelier, “Temporal backpropagation for
spiking neural networks with one spike per neuron,” International Journal
of Neural Systems, vol. 30, no. 06, p. 2050027, 2020.

[39] J. Backus, “Can programming be liberated from the von neumann style?
a functional style and its algebra of programs,” Communications of the
ACM, vol. 21, no. 8, pp. 613–641, 1978.

[40] M. Horowitz, “1.1 computing’s energy problem (and what we can do
about it),” in 2014 IEEE International Solid-State Circuits Conference
Digest of Technical Papers (ISSCC). IEEE, 2014, pp. 10–14.

[41] N. R. Mahapatra and B. Venkatrao, “The processor-memory bottleneck:
problems and solutions,” Crossroads, vol. 5, no. 3es, p. 2, 1999.

[42] Y. Cao, Y. Chen, and D. Khosla, “Spiking deep convolutional neural
networks for energy-efficient object recognition,” International Journal
of Computer Vision, vol. 113, no. 1, pp. 54–66, 2015.

[43] P. U. Diehl, D. Neil, J. Binas, M. Cook, S.-C. Liu, and M. Pfeiffer, “Fast-
classifying, high-accuracy spiking deep networks through weight and
threshold balancing,” in 2015 International joint conference on neural
networks (IJCNN). ieee, 2015, pp. 1–8.

[44] B. Rueckauer, I.-A. Lungu, Y. Hu, M. Pfeiffer, and S.-C. Liu, “Conversion
of continuous-valued deep networks to efficient event-driven networks
for image classification,” Frontiers in neuroscience, vol. 11, p. 682, 2017.

[45] A. Mohemmed, S. Schliebs, S. Matsuda, and N. Kasabov, “Span: Spike
pattern association neuron for learning spatio-temporal spike patterns,”
International journal of neural systems, vol. 22, no. 04, p. 1250012,
2012.

[46] S. Yin, S. K. Venkataramanaiah, G. K. Chen, R. Krishnamurthy, Y. Cao,
C. Chakrabarti, and J.-s. Seo, “Algorithm and hardware design of discrete-
time spiking neural networks based on back propagation with binary
activations,” in 2017 IEEE Biomedical Circuits and Systems Conference
(BioCAS). IEEE, 2017, pp. 1–5.

[47] I. Loshchilov and F. Hutter, “Sgdr: Stochastic gradient descent with
warm restarts,” arXiv preprint arXiv:1608.03983, 2016.

[48] M. Davies, A. Wild, G. Orchard, Y. Sandamirskaya, G. A. F. Guerra,
P. Joshi, P. Plank, and S. R. Risbud, “Advancing neuromorphic computing
with loihi: A survey of results and outlook,” Proceedings of the IEEE,
vol. 109, no. 5, pp. 911–934, 2021.

IEEETRANSACTIONSONNEURALNETWORKSANDLEARNINGSYSTEMS3

targetpropagation.TargetPropagation(TP),Fig1d[18],[19]
generatesatargetactivationforeachlayerinsteadofgradients
bypropagatingbackwardthroughthenetwork.Itrequires
reciprocalconnectivityandisforwardpassandbackwardpass
locked.Incontrast,sigpropgeneratesatargetactivationateach
layerbygoingforwardthroughthenetwork.Analternative
approach,EquilibriumPropagation(EP)isanenergybased
modelusingalocalcontrastiveHebbianlearningwiththe
samecomputationintheinferenceandlearningphases[6],
[20],[21].Themodelisacontinuousrecurrentneuralnetwork
thatminimizesthedifferencebetweentwofixedpoints:when
receivinganinputonlyandwhenreceivingthetargetforerror
correction.EPisclosertoaframework,whereinsymmetric
andrandomfeedback(FA)weightswork[22].Thesemodelsof
EPstillrequirecomprehensiveconnectivityforeachlayerand
areforwardpasslocked.Wedemonstratethatsigpropworks
intheEPframeworkwithouttheseproblems,moreclosely
modelingneuralnetworksinthebrain.

Anotherapproachthatreusestheforwardconnectivityfor
learning,asiswedoinsigprop,isErrorForwardPropagation,
Fig1e[23]–[28].Errorforwardpropagationisforclosedloop
controlsystemsorautoencoders.Ineithercase,theoutputof
thenetworkisinthesamespaceastheinputofthenetwork.
Theseworkscalculateanerrorbetweentheoutputandinput
ofthenetworkandthenpropagatetheerrorforwardthrough
thenetwork,insteadofbackward,calculatingthegradient
asinerrorbackpropagation.Errorforwardpropagationis
backwardpasslockedandforwardpasslocked.Italsorequires
differenttypesofcomputationforlearningandinference.In
contrast,sigpropusesonlyasingletypeofcomputationand
isbackwardpassunlockedandforwardpassunlocked.

III.SIGNALPROPAGATION

Thepremiseofsignalpropagation(sigprop)istoreusethe
forwardpathtomapaninitiallearningsignalintotargetsat
eachlayerforupdatingparameters.Thenetworkisshownin
Fig.2a;noticethattrainingusesthesameforwardpathas
inference,exceptthatinsteadofonlyfeedingthenetworkthe
inputx,wealsofeeditcthelearningsignal.Thelearning
signalissomecontextc,e.g.thelabelinsupervisedlearning.
Thelearningsignalandtheinputcanhavedifferentshapes,
e.g.asupervisedlabelisasingleintegerandtheinputisan
image.Thetargetgeneratorprojectsthelearningsignalcand
thefirsthiddenlayerprojectstheinputxtobothhavethesame
shape(densesignal)orconcordantshapes(sparsesignalSec
III-E)tobeprocessedbythenetwork,e.g.thetargetgenerator
projectsthelabeltohavethesameshapeastheinputoreven
thefirsthiddenlayer.Afterwhich,theforwardpassduring
trainingproceedsthesamewayasinference,exceptwithx
andcasthenewinputsinsteadofonlytheoriginalinputx.

Weprovideaframeworkforanygiveninputxorlearning
signalc,notonlyforsupervisedlearningwithlabels.For
example,inregressiontasks,theinputsxandoutputsy
commonlyhavethesametypeandshape;so,byusingthe
outputtrainingtargetsy∗asthelearningsignalc,thetarget
generatorandfirsthiddenlayercanbethesame(weight
sharing).Nonetheless,thefocushereissupervisedlearning.

Inthefollowingsub-sections,westartwiththegeneral
trainingprocedureIII-A,thenpredictionforbothtrainingand
inferenceIII-B,thelossfortrainingIII-C,anddetailsoftarget
generatorsIII-D.

A.Training

Theforwardpassstartswiththeinputx,alearningsignalc,
andthetargetgenerator.Assumethenetworkhastwohidden
layers,asshowninFigures2a,whereWiandbiareweightand
biasforlayeri.LetS1andd1betheweightandbiasforthe
targetgenerator.Theactivationfunctionf()isanon-linearity.
Let(x,y∗)beamini-batchofinputsandlabelsofmpossible
classes.Wefeedxintothefirsthiddenlayertogeth1.We
createaone-hotvectorofeachclasscm,thisisourlearning
signal,andfeeditintothetargetgeneratortogett1.Notice
thatxandcmhavedifferentshapes.Now,h1andt1havethe
sameshape.

h1,t1=f(W1x+b1),f(S1cm+d1)(1)
[h2,t2]=f(W2[h1,t1]+b2)(2)
[h3,t3]=f(W3[h2,t2]+b2)(3)

Theoutputtedt1isatargetfortheoutputofthefirsthidden
layerh1.ThistargetisusedtocomputethelossL1(h1,t1)for
trainingthefirsthiddenlayerandthetargetgenerator.Then,
thetargett1andtheoutputh1arefedtothenexthiddenlayer.
Theforwardpasscontinuesthiswayuntilthefinallayer.The
finallayerandeachhiddenlayerhavetheirownlosses:

J=L(h1,t1)+L(h2,t2)+L(h3,t3)(4)

whereJisthetotallossforthenetwork.Forhiddenlayers,
thelossLcanbeasupervisedloss,suchasLpredEq.9which
isusedinSectionIV.ItcanalsobeaHebbianupdaterule,
suchasEq.14whichisusedinSectionV.Forthefinallayer,
thelossLisasupervisedloss,suchasLpredEq.9.

Intotal,eachlayerprocessesitsinputandinput-targetto
createanoutputandoutput-target.Thelayercomparesits
outputwithitsoutput-targettoupdateitsparameters.Inthis
way,thelayerlocallycomputesitsupdatefromagloballearning
signal.Thelayerthensendsitsoutputandoutput-targettothe
nextlayerwhichwillcomputeitsownupdate.Thisprocesses
continuesuntilthefinallayerhascomputeditsupdateand
producesthenetwork’soutput(prediction).Fromthisprocedure
collectively,thenetworklearnstoprocesstheinputtoproduce
anoutput,andatthesametime,learnstomakeaninitial
learningsignalintoausefultrainingtargetateachhiddenlayer
andfinallayer.Inotherwords,thenetworkitself,whichisthe
forwardpath,takesontheroleofthefeedbackconnectivity
inproducingalearningsignalforeachlayer.Thismakes
sigpropcompatiblewithmodelsoflearningwherebackward
connectivityislimited,suchasinthebrainandlearningin
hardware(e.g.neuromorphicchips).

B.PredictionforTrainingandInference

Intraining,thepredictionyisformedbycomparingthefinal
layer’soutputh3withitstargett3(OutputTarget)-Fig2a.For
inference,thesameproceduremaybeusedifgrouptargets,

IEEETRANSACTIONSONNEURALNETWORKSANDLEARNINGSYSTEMS10

TABLEV
THETESTERRORFORASPIKINGCONVOLUTIONALNEURALNETWORK.

BPSP
SurrogateShallowSurrogateVoltage

Fashion-MNIST6.7016.429.5110.68
MNIST0.847.241.012.63

B.Results

WecomparefourspikingmodelsontheMNISTand
Fashion-MNISTdatasets-Table.V.TheBPmodelpropagates
backwardthroughthespikingequationsateachlayerusing
adifferentiablesurrogate.TheShallowmodelonlytrainsthe
classificationlayer.TheSPSurrogatemodelusesthesame
differentiablesurrogateasBPdoes,butSPpropagatesforward
throughthenetworkandthereforedoesnotneedtogothrough
thespikingequationtodeliveralearningsignal.Thatis,the
parameterupdateandsurrogatearebeforeorperpendicular
tospiking,possiblyasseparatecompartment.Finally,theSP
voltagemodelusestheneuron’svoltage(i.e.directlyuses
thespikingequation)tocalculatethelossandupdatethe
parameters,nosurrogateisused.

Incontrast,BPbasedlearning(withoutconsiderablemodifi-
cationsandadditions)struggleswhenonlyusingthevoltage
forlearning[37],[38].Adifferentiablenonlinearfunction
estimatingthespikingbehavior(i.e.surrogate)isnecessary
forreasonableperformanceinBPlearning.Asurrogateis
alsonecessaryforsigproptocomeclosetoBPsurrogate
performance.Evenwithoutasurrogate,theSPVoltagemodel
isabletotrainthenetworksignificantlybetterthantheShallow
model.Tothebestofourknowledge,sigpropistheonly
learningframeworkwithaglobalsupervised(unsupervised,
reinforcement)learningsignalthatsatisfiesrequirementsfor
hardware(on-chip)learning[8],[48].

VII.DISCUSSIONANDCONCLUSION

Alternativelearningalgorithmstobackpropagationrelax
constraintsonlearningunderbackpropagation,suchasfeedback
connectivity,weighttransport,multipletypesofcomputations,
orabackwardpass.Thisisdonetoimprovetrainingef-
ficiency,loweringtimeormemory,orenablingdistributed
orparallelexecution;and,toimprovecompatibilitywith
biologicalandhardwarelearningmodels.However,relaxing
constraintsnegativelyimpactsperformance.So,alternatives
tryvaryingrelaxationsorsupplementarymodificationsand
additionsinanattempttoretaintheperformancefoundunder
backpropagation.Forinstance,thebestperformingandleast
constrainedalternativealgorithm,LL-FA,usesalayer-wise
lossandrandomfeedbacktorelaxconstraints,butaddslayer-
wiseauxiliarynetworkstoretainperformance.Incontrast,
sigprophasnoconstraintsonlearning,beyondtheinference
model,andwithoutconstraining(e.g.layer-wise)additionsor
modifications.

Wedemonstratedthatsigprophasfastertrainingtimesand
lowermemoryusagethanBP,LL-BP,andLL-FA.Thereason
sigpropismoreefficientthanBPisclear,sigpropisforwardpass

unlockedwhileBPisbackwardpasslocked.ForLL-BPand
LL-FA,sigpropismoreefficientasithasfewerlayersfor
learning,ithasnoauxiliarynetworks.LL-BPhas2auxiliary
layersforeveryhiddenlayer.LL-FAhas3auxiliarylayersfor
everyhiddenlayer.InSectionIV-B,weshowedthatsparse
targets,whichhaveamuchsmallersizethanthehiddenlayer
outputs,areabletotrainthehiddenlayeraswellasdense
targets,whichhavethesamesizeasthehiddenlayeroutputs.
Akeyfeatureoflearninginthebrainandbiologicalneural
networksissparsity.Asmallfractionoftheneuronsweigh
inoncomputationsanddecisionmaking.Itisencouraging
thatsigpropisabletolearnjustaswellwithasparselearning
signal.

InSectionV,weappliedsigproptoatimecontinuous
modelusingaHebbianplasticitymechanismtoupdateweights,
demonstratingsigprophasdynamicalandstructuralcompatibil-
itywithbiologicalandhardwarelearning.Withthiscontinuous
model,wealsoshowedthatsigpropisabletoprovideuseful
learningsignals.WhilesigpropimprovestheperformanceofEP,
theFashion-MNISTresultsdemonstratethatthereisroomfor
growth.Oneproblemmaybethatthelayersonthepathfrom
theinputtotheoutputhavetheirweightupdatesdominatedby
theinput,soarestrugglingtocomeintoalignmentwiththe
loopbacklayer.Infuturework,wewillcompensatetoincrease
alignment.

InSectionVI,wedemonstratedakeyfeatureofsigpropnot
seeninothergloballearningalgorithms:sigpropdoesnotneed
togothroughanon-derivable,non-continuousspikingequation
toprovidealearningsignaltohiddenlayers.Thismakes
sigpropidealforhardware(on-chip)learning.Furthermore,
sigpropisabletotrainanSNNusingspikes(voltage),which
backpropagationstrugglestodo,andatareduced16-bit
precision.So,noadditionalcomplexcircuitryisnecessary.This
makeson-chipgloballearning(e.gsupervisedorreinforcement)
moreplausiblewithsigprop,whereasthecomplexneuronand
synapticmodelsofprevioussupervisedlearningalgorithms
areimpractical[8],[48].Thisisinadditiontosigpropnot
havingarchitecturalrequirementsforlearningandhavingthe
sametypeofcomputationforlearningandinference,which
ontheirownaddresshardwareconstraintsrestrictingtheuse
ofprevioussupervisedlearningalgorithms[8],[48].Weare
workingtoimplementsigproponhardwareneuralnetworks.

Wedemonstratedsignalpropagation,anewlearningframe-
workforpropagatingalearningsignalandupdatingneural
networkparametersviaaforwardpass.Ourworkshowsthat
learningsignalscanbefedthroughtheforwardpathtotrain
neurons.Inbiology,thismeansthatneuronswhodonot
havefeedbackconnectionscanstillreceiveagloballearning
signalthroughtheirincomingconnections.Inhardware,this
meansthatgloballearning(e.gsupervisedorreinforcement)
ispossibleeventhoughthereisnobackwardconnectivity.
Atitscore,sigpropre-usestheforwardpathtopropagatea
learningsignalandgeneratetargets.Withthiscombination,
therearenostructuralorcomputationalrequirementsfor
learning,beyondtheinferencemodel.Furthermore,thenetwork
parametersareupdatedassoonastheyarereachedbya
forwardpass.So,sigproplearningisidealforparalleltraining
oflayersormodules.Intotal,wepresentedlearningmodels

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 4

L

h1

x

W3

W2

W1

W3T

W2T

B2

B1

h2

y

h1

x

B2

B1
h2

y

h1

x

h2

y

h1

x

h2

y

a1

a2

L L L

h1

x

h2

y

!"

L

L2

L1
h1

x

h2

t1

t2

L(h1,t1)

c
S1

L(h2,t2)

L1(!",!")

c

!$
L2(!$,!$)

c

h3 t3

L(h3,t3)
y

Forw. Locked
Backw. Locked
Backprop Error
Backprop Target
Direct Error
Forprop Error
Forprop Target
Direct Target
Local Loss
Global Signal

global
global
yes
no
no
no
no
no
no
yes

global
global
no
no
no
no
no
no
no
yes

global
none
no
no
yes
no
no
no
no
yes

local∓
local∓
yes
no
no
no
no
yes°
yes
no

local*
none*
yes
no
no
no
no
yes°
no
no*

none
none
no
no
no
no
yes
no
yes
yes

h1

x

W3T

W2T

h2

y

h1

x

h2

h3
L

global
global
no
yes
no
no
no
no
yes
yes

global
global
no
no
no
yes
no
no
no
yes

t2
L(h2,t2)

t1
L(h1,t1)

y

a2

a1

W4

W5

W6

L(x,y)

Forward Path

Error Gradient Path /
Target Path

Weights are Not
Trained

Forward
Context/State

One or More
Layers in Path

a) BP b) FA c) DFA f) LL g) SG h) SPd) TP e) EFPMethod

Network

Fig. 1. Comparison of Learning Algorithms Relaxing Learning Constraints Under Backpropagation. a) the backpropagation algorithm b,c) the feedback
alignment and direct feedback alignment algorithms. FA based algorithms do not solve forwardpass locking and require additional connectivity. d) target
propagation uses a single type of computation for training and inference, but is forwardpass locked and requires feedback connectivity. e) error forward
propagation for closed loop systems or autoencoders reuses the forward connectivity to propagate error, but is otherwise similarly constrained as backpropagation.
f) local learning with layer-wise training using auxiliary classifiers. ∓LL is forwardpass and backwardpass locked at the layer level as the auxiliary networks
use backpropagation. Backpropagation in the auxiliary networks may be substituted with an alternative model, such as FA. g) the synthetic gradients algorithm.
*SG based algorithms are only forwardpass and backwardpass unlocked after learning to predict the synthetic gradient. h) the signal propagation learning
algorithm presented in this work. SP feeds the learning signal forward through the network to solve the weight transport and forwardpass locking problems
without requiring additional connectivity requirements. For SP, taking t3 with h3 produces y, however a classification layer may also be used Fig. 2. Table)
Direct Error and Direct Target means that a model uses the error or target directly at layer hi. ◦Direct target can be substituted in LL and SG, with direct error
or temporary use of backpropagation for example. Forprop stands for forward propagation. Forprop error and Forprop target means the model uses the error or
target starting at the input layer, instead of starting at the output layer as is done in backpropagation. Global Signal means the learning signal is propagated
through the network instead of sent directly to or formed at each hidden layer. Networks) The light grey arrows indicate the feed forward path. Dark grey
arrows indicates error gradient or target paths. If the dark grey arrow pass through a layer, the weights are not trained by the error gradient or target. Dotted
lines indicate the weights are not trained. Double lines, light or dark grey, are forwarding the context c or state hi, without modification. Double arrows indicate
going through one or more intermediate hidden layers. Wi and Si are trained weights and Bi are fixed random weights. There are versions of these models
where Bi is trained to be the transpose of Wi. The loss function is L and takes the output of the previous layer and possibly some target y∗ when unspecified.
The target generator layer S1 generates the initial training target ti from a learning signal, which is some privileged information or context c, usually the label
in supervised learning. The gradient is δ and the synthetic gradient is δ̂. Auxiliary networks are represented by the double arrows going into ai and δ̂i.

such as class labels, are available. However, no target of any
kind is needed for inference - Fig 2b. Instead, a classification
layer may be used with no effect on performance (Classification
Layer) Fig 2b. In general, the last layer may be any type of
prediction layer, such as a classification layer or the output
layer for regression tasks. With a prediction layer, inference
for classification, regression, or any task proceeds as usual,
without using a target. We describe both version of sigprop
below.

Output Target, Fig 2a: The network’s prediction y at the
final layer is formed by comparing the output h3 and outputted
target t3 (Fig 2a):

y = y3 = O(h3, t3) (5)

where O is a comparison function. Two such comparison
functions are the dot product and L2 distance. We use the less
complex Odot,

Odot(hi, ti) = hi · tTi (6)

Ol2(hi, ti) =
∑

k

||ti[i, 1, k]− hi[1, j, k]||22 (7)

but both versions give similar performance using the losses in
Section III-C. Each hidden layer can also output a prediction,

these are known as early exits (faster responses from earlier
layers during inference):

y = yi = O(hi, ti) (8)

Classification Layer, Fig 2b: The final layer of the network
may be replaced with the standard output layer used in neural
networks, e.g. the classification layer for supervised learning, as
shown in Fig 2b. This simplifies predictions during inference,
matching standard neural network design. In this case, the
learning signal c (e.g. labels in supervised learning) would be
projected to the final layer of the network, as per standard
training of networks. The target t3 is no longer used during
inference to form y, so neither is the context generator.

C. Training Loss

In sigprop, losses compare neurons with themselves over
different inputs and with each other. The Lpred is the basic
loss we use.

Prediction Loss: The prediction loss is a cross entropy loss
using a local prediction, Eq 8. The local prediction is from a
dot product between the layer’s local targets ti and the layer’s
output hi. Given a hidden layer’s local targets ti = (t1i , . . . , t

m
i)

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 9

L
ea

rn
ed

0 10 20 30 40 50 60
Examples (x6e4)

0

10

20

30

40

50

60

70

80

90

An
gl

e
(W

23
W

1)

Single path
All paths

0 10 20 30 40 50 60
Examples (x6e4)

0

10

20

30

40

50

60

70

80

90

An
gl

e
(W

31
W

2)

Single path
All paths

0 10 20 30 40 50 60
Examples (x6e4)

0

10

20

30

40

50

60

70

80

90

An
gl

e
(W

12
W

3)

Single path
All paths

] 1st Hidden Layer] 2nd Hidden Layer] Loop Back Layer

Fig. 4. Signal Propagation updates bring weights into alignment within 90◦, approaching backpropagation symmetric weight alignment. Sigprop provide useful
targets for learning. The weight alignment for a network with two hidden layers W1 and W2 and one loop back layer W3 is shown. The weight matrices
form a loop in the network and come into alignment with each other during training on the Fashion-MNIST dataset. Each weight matrix aligns with the
product of the other two weights forming the network loop. Wxy]Wz means the angle between weight z and the matrix multiplication of the weights x
and y. Learned) The loop back layer is trained. However, even a fixed loop back layer reaches a similar angle of alignment. Layers) The loop back layer
converges before the 1st and 2nd hidden layers can. The 1st hidden layer is the least aligned with the 2nd hidden layer and the loop back layer because it is
dominated by the input signal. The alignment angles are taken for every sample and error bars are one standard deviation.

VI. SPIKING NEURAL NETWORKS

We demonstrate that sigprop can train a spiking neural
model with only the voltage (spike), and improves the hardware
compatibility of surrogate functions by reducing them to local
update rules. This is an improvement over backpropagation
based approaches as they: struggle to learn with only the
voltage; require going backward through non-derivable, non-
continuous spiking equations; and require comprehensive
feedback connectivity - all of which are problematic for
hardware and biological models of learning [8], [37], [38].

Spiking is the form of neuronal communication in biological
and hardware neural networks. Spiking neural networks (SNN)
are known to be efficient by parallelizing computation and
memory, overcoming the memory bottleneck of Artificial
Neural Networks (ANN) [39]–[41]. However, SNNs are are
difficult to train. A key reason is that spiking equations are
non-derivable, non-continuous and spikes do not necessarily
represent the internal parameters, such as membrane voltage
of the neuron before and after spiking [8]. Spiking also
has multiple possible encodings for communication when
considering time which are non-trivial, whereas artificial neural
networks (ANN) have a single rate value for communication
[8]. One approach to training SNNs is to convert an ANN
into a spiking neural network after training [42]–[44]. Another
approach is to have an SNN in the forward path, but have
a backpropagation friendly surrogate model in the backward
path, usually approximately making the spiking differentiable
in the backward path to update the parameters [8], [45], [46].

We trained SNNs with sigprop. The target is forwarded
through the network with the input, so learning is done before
the spiking equation. That is, we do not need to differentiate a
non-derivable, non-continuous spiking equation to learn. Also,
the SNN has the same dynamics in inference and learning and
has no reciprocal feedback connectivity. This makes sigprop
ideal for on-chip, as well as off-chip, training of spiking neural
networks. We measure the performance of this model on the
MNIST and Fashion-MNIST datasets.

A. Spiking Neural Network

We train a convolutional spiking neural network with
Integrate-and-Fire (IF) nodes, which are treated as activation
functions. The IF neuron can be viewed as an ideal integrator
where the voltage does not decay. The subthreshold neural
dynamics are:

vti = vt−1i + hti (15)

where vti is the voltage at time t for neurons of layer i and hti
is the layer’s activations. The surrogate spiking function for
the IF neuron is the arc tangent

g(x) =
1

π
arctan(πx) +

1

2
(16)

where the gradient is defined by

g′(x) =
1

1 + (πx)2
(17)

The neuron spikes when the subthreshold dynamics reach
0.5 for sigprop, and 1.0 for BP and Shallow models. All
models is simulated for 4 time-steps, directly using the
subthreshold dynamics. The SNN has 4 layers. The first two
are convolutional layers, each followed by batch normalization,
an If node, and a 2x2 maxpooling. The last two layers are
fully connected, with one being the classification layer. The
output of the classification layer is averaged across all four
time steps and used as the network output. ADAM was used for
optimization [29]. The learning rate was set to 5e− 4. Cosine
Annealing [47] was used as the learning rate schedule with the
maximum number of iterations Tmax set to 64. The models
are trained on the MNIST and Fashion-MNIST datasets for
64 epochs using a batchsize of 128. We use automatic mixed
precision for 16-bit floating operations, instead of the only the
full 32-bit. The reduced precision is better representative of
hardware limitations for learning. We use the classification
layer version of sigprop Fig. 2b.

IEEETRANSACTIONSONNEURALNETWORKSANDLEARNINGSYSTEMS5

andasizenmini-batchofoutputshi=(h
1
i,...,h

n
i)ofthe

samehiddenlayer:

Lpred(hi,ti)=CE(y∗
i,−Odot(hi,ti))(9)

wherehiandtihavethesamesizeoutputdimension.The
crossentropyloss(CE)usesy∗

i,whichisareconstructionof
thelabelsy∗ateachlayerifromthepositionalencodingof
theinputsxandcontextcm.,startingfromtheactivationsh1
andtargetst1formedatthefirsthiddenlayer.Inparticular,
weformanewbatch[h1,t1]byinterleavingh1andt1such
thateachsample’sactivationsinh1isconcatenatedafterits
correspondingtargett1.Then,ateachlayeri,weassigna
labelforeachsamplehijdependingonwhichtargettikthe
samplecameafter,where0≤k<j.Manydifferentencodings
areavailable,dependingonthetaskandtargetgenerator.An
alternativeistousetheapproachinSectionVwhichmerges
thecontextc,andthereforegeneratedtargetst1,withtheinputs
xtoformasinglecombinedinputxt,aninput-targetIII-D,and
theneithercomparesthemwitheachotherorusesanupdate
ruleovermultipleiterations.Thesecondoptionisnaturalfor
continuousnetworkswheremultipleiterations(e.gtimesteps)
cansupportrobustupdaterules.

D.TargetGenerators

Thetargetgeneratortakesinalearningsignalassome
contextctoconditionlearningonandthenproducesthe
initialtarget,whichisfedforwardthroughthenetworkto
producetargetsateachhiddenlayer.Therearemanypossible
formulationsofthetargetgenerator,suchas:fixedorlearned,
projectingtoinputorfirsthiddenlayer,andsharingweights
withthefirsthiddenlayer.Werecommenddecidingbased
onthetask,selectedlearningsignal(s),andimplementation
constraints.Forexample,insegmentationtaskswhereoutputs
havethesameshapeastheinputs,wecanusetheoutput
trainingsegmentationtargetsforthelearningsignalandhave
thetargetgeneratorshareweightswiththefirsthiddenlayer.We
describethreeformulationsbelowtoaddressdifferentlearning
scenarios,particularlyhardwareconstrained,continuous,and
spike-timelearning.

Target-Only,Fig2a,b:Thisistheversiondescribedin
Eq.1andconditionsonlyontheclasslabel.Thisversion
ofthetargetgeneratorcaninterferewithbatchnormalization
statisticsash1andt1donotnecessarilyhavesimilarenough
distribution.Batchnormalizationstatisticsmaybedisabledor
beputininferencemodewhenprocessingthetargets,therefore
onlycollectingstatisticsontheinput.

Target-Input,Fig2a,b:Anothercontextweconditionon
istheclasslabelandinput.Wefeedaone-hotvectorofthe
labelsy∗

mthroughthetargetgeneratortoproduceascaleand
shiftfortheinput.Wetakethescaledandshiftedoutputas
thetargetforthefirsthiddenlayer.

t1=h1f(S1cm+d1)+f(S2cm+d2)(10)

Thetargett1isnowmorecloselytiedtothedistributionof
theinput.Wefoundthatthisformulationofthetargetworks
betterwithbatchnormalization.Eventhoughthisversionhas

similarperformancetoEq.1,itincreasesmemoryusageas
eachinputwillhaveitsownversionofthetargets.

Target-Loop,Fig2c:Thelastoptionistoincorporatea
formoffeedback.Theimmediatechoiceistoconditiononthe
activationsofthepredictionsy3andlabelsy∗

m,

t1=f(S1y3+S1y∗
m+d1)(11)

orusingthefinallayer’soutputanderrore3withthetargett3
tocorrectit

t1=f(S1(h3−ηe3)+d1)(12)

,f(S1(h3−η
dL

dh3
)+d1)

whereηcontrolshowmucherrore3tointegrate.Weuseitin
SectionVforcontinuousnetworks.

E.SparseLearning

Sigpropcanbeaformofsparselearning.Wereformulatethe
targetgeneratortoproduceasparsetarget,whichisasparse
learningsignal.Wemakethetargetstiassparseaspossible
suchthatatminimum,theycanstillbetakenwitheachlayer’s
weightsWi,viaaconvolutionordot-product,andthenfed-
forwardthroughthenetwork.Tomakethetargetsparse,we
reducetheoutputsizeofSiinthetargetgenerator.Weuse
sparselearningthroughoutthispaper,exceptwhenotherwise
written.

Forconvolutionallayers,theoutputsizeofSiismadethe
samesizeastheweights.Forexample,lettherebeaninput
of32x28x28andaconvolutionalhiddenlayerof32x16x3x3,
where32isthein-channels,28x28isthewidthandheight
oftheinput,16istheout-channels,and3x3isthekernel.
Thedensetarget’sshapeis32x28x28.Incontrast,thesparse
target’sshapeisreducedto10x32x3x3.Asaresult,even
thoughconvolutionallayershaveweightsharing,thereisno
weightsharingwhenconvolvingwithasparsetarget.

Forfullyconnectedlayers,theoutputsizeofSiismade
smallerthaninputsizeoftheweights.Forexample,letthere
beaninputof1024andafullyconnectedhiddenlayerof
1024x512features.Thedensetarget’sshapewouldbe1024.In
contrast,thesparsetarget’sshapeis<1024.Then,weresize
thetargettomatchthelayerinputsizeof1024byfillingit
withzeros.Withthesparsetarget,thelayerisnolongerfully
connected.

IV.EXPERIMENTS

Wecomparesigprop(SP)withFeedbackAlignment(FA)and
LocalLearning(LL).Wealsoshowresultsforbackpropagation
(BP)asreference.ThemodelsareshowninFigure1.FAuses
fixedrandomweightstotransporterrorgradientinformation
backtohiddenlayers,insteadofusingsymmetricweights.
ForLL,weshowresultsfortwomodelversions.Thefirst
usesBPatthelayerlevel(LL-BP),andthesecondusesFAin
theauxiliarynetworkstohaveabackpropagationfreemodel
thatrelaxeslearningconstraintsunderbackpropagation(LL-
FA).LL-FAperformsbetterthanusingFAorDFAalone.We
useLL-BPandLL-FAwithpredsimlossesontheVGG8b
architecture[14].WetrainedseveralnetworkontheCIFAR-10,

IEEETRANSACTIONSONNEURALNETWORKSANDLEARNINGSYSTEMS8

intoalignment.InSectionV-B,wemeasuredtheperformance
ofthismodelontheMNISTandFashion-MNISTdatasets
[34],[35].

A.AContinuousRecurrentNeuralNetworkModel
Thelearningframework,EquilibriumPropagation(EP),

proposedin[6]isonewaytointroducephysicaltimeindeep
continuouslearningandhavethesamedynamicsininference
andlearning,avoidingtheneedfordifferenthardwareforeach.
EPhasbeenusedwithsymmetricorrandomfeedbackweights.
WecombineSigpropwithEPsuchthattherearenoadditional
constraintsonlearning,beyondtheHebbianupdate.Wetrained
deeprecurrentnetworkswithaneuronmodelbasedonthe
continuousHopfieldmodel[36]:

dsj
dt

=
dρ(sj)

dsj
(
∑

i→j
wijρ(si)+

∑

i∈O→j∈I
wijρ(si)+bj)(13)

−
sj
rj−β

∑

j∈O
(sj−dj)

wheresjisthestateofneuronj,ρ(sj)isanon-linearmonotone
increasingfunctionofit’sfiringrate,bjisthebias,βlimits
magnitudeanddirectionofthefeedback,Oisthesubsetof
outputneurons,Iisthesubsetofinputreceivingneurons,
anddjisthetargetforoutputneuronj.Theinputreceiving
neurons,sj∈I,aretheneuronswithforwardconnectionsfrom
theinputlayer.Thenetworksareentirelyfeedforwardexcept
forthefinalfeedbackloopfromtheoutputneuronssi∈Oto
theinputreceivingneuronssj∈I.Allweightsandbiasesare
trained.Theweightsinthefeedbackloopconnectionsmaybe
fixedortrained.TheoutputneuronsreceivetheL2errorasan
additionalinputwhichnudgesthefiringratetowardsthetarget
firingratedj.Thetargetfiringratedjistheone-hotvector
ofthetargetvalue;alltasksinthissectionareclassification
tasks.

TheEPlearningalgorithmcanbebrokenintothefreephase,
theclampedphase,andtheupdaterule.Inthefreephase,the
inputneuronsarefixedtoagivenvalueandthenetworkis
relaxedtoanenergyminimumtoproduceaprediction.Inthe
clampedphase,theinputneuronsremainfixedandtherateof
outputneuronssj∈Oareperturbedtowardthetargetvalue
dj,giventhepredictionsj,whichpropagatestoconnected
hiddenlayers.TheupdateruleisasimplecontrastiveHebbian
(CHL)plasticitymechanismthatsubtractss

0
is

0
jattheenergy

minimum(fixedpoint)inthefreephasefroms
β
is
β
jafterthe

perturbationoftheoutput,whenβ>0:

∆Wij∝ρ(si)
d

dβ
(ρ(sj))≈

1

β
ρ(s

0
i)(ρ(s

β
j)−ρ(s

0
j))(14)

Theclampingfactorβallowsthenetworktobesensitiveto
internalperturbations.Asβ→+∞,thefullyclampedstate
ingeneralCHLalgorithmsisreachedwhereperturbations
fromtheobjectivefunctiontendtooverrunthedynamicsand
continuebackwardsthroughthenetwork.

B.SignalPropagationProvidesUsefulLearningSignals
Welookatthebehaviorofourmodelduringtraining

andhowthefeedbackloopdrivesweightchanges.Precise

symmetricconnectivitywasthoughttobecrucialforeffective
errordelivery[1].FeedbackAlignment,however,showedthat
approximatesymmetrywithreciprocalconnectivityissufficient
forlearning[10]–[12].DirectFeedbackAlignmentshowedthat
approximatesymmetrywithdirectreciprocalconnectivityis
sufficient.Intheprevioussections,weshowedthatnofeedback
connectivityisnecessaryforlearning.Here,weconductan
experimenttoshowthatthesameapproximatesymmetryis
foundinsigprop.

Weprovideevidencethatsigpropbringsweightsinto
alignmentwithin90◦,knownasapproximatesymmetry.In
comparison,backpropagationhascompletealignmentbetween
weights,knownassymmetricconnectivity.Notethatthisisnot
ameasureofapproximationtobackpropagation-sigpropisa
newanddifferentapproach;instead,thisisameasureofthe
qualityofthelearningsignalindeeperlayers,contextualized
byobservationsoflearningwithbackpropagation,particularly
symmetry.Inthisexperiment,thesigpropnetworkarchitecture
formsaloop,soalltheweightsserveasbothfeedbackand
feedforwardweights.Foragivenweightmatrix,thefeedback
weightsarealltheweightsonthepathfromthedownstream
errortothepresynapticneuron.Ingeneral,thisisallthe
otherweightsinthenetworkloop.Theweightmatricesinthe
loopevolvetoalignwitheachotherasseeninFig.4.More
precisely,eachweightmatrixroughlyalignswiththeproduct
ofalltheotherweightsinthenetworkloop.InFig.4,the
weightalignmentforanetworkwithtwohiddenlayersW1

andW2andoneloopbacklayerW3isshown.
InformationaboutW3andW1flowsintoW2as

roughlyW3W1,whichnudgesW2intoalignmentwith
therestoftheweightsintheloop.Fromequation14,
W2∝ρ(~s

0
2)(ρ(~s

β
3)−ρ(~s

0
3))where~s2←ρ(~s1)W1,which

meansinformationaboutW1accumulatesinW2.Similarly,
W1∝ρ(~s

0
1)(ρ(~s

β
2)−ρ(~s

0
2)),exceptsincethenetworkarchi-

tectureisafeedforwardloop,~s1←ρ(~s3)W3,whichmeans
informationaboutW3accumulatesinW1.Theresultisshown
incolumncofthebottomrowofFig.4,whereaweight
matrixisfixedandtherestofthenetwork’sweightscomeinto
alignmentwiththefixedweight.NoticethatW3W1hasthe
sameshapeasW

T
2andservesasit’s‘feedback’weight.

C.ClassificationResults
WeprovideevidencethatsigpropwithEPhascomparable

performancetoEPwithsymmetricweights,andreportthe
performanceresultsoftheexperimentintheprevioussection.
Atwoandanotherthreelayerarchitectureof1500neuronsper
layerweretrained.Thetwolayerarchitecturewasrunforsixty
epochsandthethreelayerforonehundredandfiftyepochs.
Thebestmodelduringtheentirerunwaskept.OntheMNIST
dataset[34],thegeneralizationerroris1.85−1.90%forboth
thetwolayerandthreelayerarchitectures,animprovement
overEP’s2−3%.Thebestvalidationerroris1.76−1.80%
andthetrainingerrordecreasesto0.00%.Todemonstratethat
sigpropprovidesusefullearningsignalsintheprevioussection,
wetrainedthenetworkonthemoredifficultFashion-MNIST
dataset[35].Thegeneralizationerroris11.00%.Thebest
validationerroris10.95%andthetrainingerrordecreasesto
2%.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 6

L(h1,t1)

c
S1

L(h2,t2)

h1

x

h2

t1

t2

L(h1,t1)

c
S1

L(h2,t2)

[0, 0, 1, …]
[1, 0, 0, …]
…

h1

x

h2

y
L(y)

t1

t2

! "#$ +&# , ! (#) + *#

! "+ ,#,-# + &+

! ". ,+,-+ + &+

/ = ".,+ +&+/ = ,. ⋅ -.2

h3 t3

L(h3,t3)
y

h1

x

h2

y

t1

t2

L(h1,t1)
S1

L(h2,t2)

L(y)

a) Output Target b) Classification Layer c) Target Loop

h1

x

h2

y

Training InferenceTraining/Inference Training/Inference

/ = ".,+ +&+

c

Prediction

Fig. 2. Different Versions of sigprop (SP). a) For sigprop, the prediction y is
formed by taking t3 with h3. sigprop does not need a classification layer. b)
However, a classification layer may be used without effecting performance.
In this case, the last hidden layer’s outputs are sent to the classification layer.
The classification layer has a benefit for inference. During inference, the
target t3 is no longer needed to make predictions, so the context c and target
generator are not used. c) This is the version of sigprop used in Sections V for
the continuous rate model. The classification layer feeds back into the input
layer creating a feedback loop, so y is the context c: y = c. This feedback
loop allows the target of hidden layers earlier in the network to incorporate
information from hidden layers later in the network without incurring the
overhead of reciprocal feedback to every neuron. Continuous networks have
multiple iterations which is ideal for this version of sigprop. The other versions
of sigprop may also be used.

Fig. 3. Training in sigprop (SP). The learning signals c and inputs x are
fed into the network. Then, each layer successively brings the learning signal
5 : [1, 0] closer to the images of 5, but farther away from learning signal
7 : [0, 1] and images of 7. The same is done for 7. Before the first layer 1),
the images and learning signal of the same class are not closer to each other
than to other classes. In the first layer 2), we nudge 5 : [1, 0] and the image
of 5 closer; the same for 7. This continues in the following layer 3) and then
the final layer 4), at which point the learning signal and inputs of the same
class are close each other, but farther from the other class. In general, each
layer successively bring inputs x and there respective learning signals c closer
together than all other inputs and learning signals.

CIFAR-100, and SVHN datasets. We used a VGG architecture.
The experiments were run using the PyTorch Framework. All
training was done on a single GeForce GTX 1080. For each
layer to have a separate loss, the computational graph was
detached before each hidden layer to prevent the gradient
from propagating backward past the current layer. The target
generator was conditioned on the classes, producing a single
target for each class.

Results for BP, LL-BP, LL-FA, and SP A batch size of 128
was used. The training time was 100 epochs for SVHN, and
400 epochs for CIFAR-10 and CIFAR-100. ADAM was used

for optimization [29]. The learning rate was set to 5e− 4. The
learning rate was decayed by a factor of .25 at 50%, 75%, 89%,
and 94% of the total epochs. The leaky ReLU activation with
a negative slope of 0.01 was used [30]. Batch normalization
was applied before each activation function [31] and dropout
after. The dropout rate was 0.1 for all datasets. The standard
data augmentation was composed of random cropping for all
datasets and horizontal flipping for CIFAR-10 and CIFAR-100.
The results over a single trial for VGG models.

The CIFAR-10 dataset [32] consists of 50000 32x32 RGB
images of vehicles and animals with 10 classes. The CIFAR-
100 dataset [32] consists of 50000 32x32 RGB images of
vehicles and animals with 100 classes. The SVHN dataset [33]
consists of 32x32 images of house numbers. We use both the
training of 73257 images and the additional training of 531131
images.

A. Efficiency

We measured training time and maximum memory usage
on CIFAR-10 for BP, LL-BP, LL-FA, and SP. The version of
SP used is 2b with the Lpred loss. The results are summarized
in Table I. LL and SP training time are measured per layer as
they are forwardpass unlocked and layers can be updated in
parallel. However, BP is not forwardpass unlocked, so layers
are updated sequentially and is therefore necessarily measured
at the network level. Measurements are across all seven layers,
which is the source of the high variance for LL and SP, and
over four hundred epochs of training. To ensure training times
are comparable, we compare the epochs at which SP, LL, and
BP converge toward their lowest test error. We also include
the first epochs that have performance within 0.5% of the
best reported performance. All learning algorithms converge
within significance of their best performance around the same
epoch. Given efficiency per iteration, SP is faster than the other
learning algorithms and has lower memory usage.

The largest bottleneck for speed of LL and SP is successive
calls to the loss function in each layer. Backpropagation only
needs to call the loss function once for the whole network;
it optimizes the forward and backward computations for all
layers and the batch. SP and LL would benefit from using a
larger batch size than backpropagation. The batch size could be
increased in proportion to the number of layers in the network.
This is only pragmatic in cases where memory can be sacrificed
for more speed (e.g. not edge devices). We also provide per
layer measurements in Tables II. At the layer level, SP remains
faster and more memory efficient than LL and backpropagation.
It is interesting to note that LL and SP tend to be slower and
faster in different layers even though both are using the same
architecture. For memory, SP uses less memory than LL and
BP regardless of the layer. However, there is a general trend for
LL and SP: the layers closer to the input have more parameters,
so are slower and take up more memory then layers closer to
the output.

B. Sparse Local Targets

We demonstrate that sigprop (SP) can train train a network
with a sparse learning signal. We use the larger VGG8b(2x)

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 7

TABLE I
THE TRAINING TIME PER SAMPLE AND MAXIMUM MEMORY USAGE PER BATCH OVER ALL LAYERS FOR VGG8B

Backprop Alternative
BP LL-BP LL-FA SP

Time (s) CIFAR-10 12.29± 0.02 8.11± 14.40 8.50± 29.86 5.91± 7.40
CIFAR-100 15.34± 1.45 10.20± 28.98 9.44± 28.63 6.25± 7.33
SVHN 148.70± 2.23 95.51± 3617.90 89.32± 1767.26 69.74± 1048.54

Mem (MiB) CIFAR-10 22.00± 0.00 8.85± 8.06 13.03± 10.61 6.19± 1.57
CIFAR-100 27.16± 0.38 11.45± 106.02 5.51± 23.17 5.19± 16.72
SVHN 28.04± 2.68 11.41± 106.03 5.43± 23.04 4.91± 16.54

Best Epoch CIFAR-10 319(198) 266(164) 309(201) 313(207)
CIFAR-100 350(306) 380(209) 339(264) 329(219)
SVHN 98(11) 41(7) 93(23) 88(34)

Test Error (%) CIFAR-10 5.99 5.58 9.02 8.34
CIFAR-100 26.20 29.31 38.41 34.30
SVHN 2.19 1.77 2.55 2.15

TABLE II
THE TRAINING TIME PER SAMPLE AND MAXIMUM MEMORY USAGE PER

BATCH PER LAYER ON CIFAR-10 FOR VGG8B

Backprop Alternative
Layer LL-BP LL-FA SP

Time (s)
1 7.16± 0.04 6.21± 0.03 4.48± 0.05
2 15.80± 0.07 15.15± 0.09 8.95± 0.15
3 9.27± 0.04 7.09± 0.02 10.13± 0.14
4 9.25± 0.30 18.40± 0.06 7.27± 0.25
5 4.93± 0.01 5.66± 0.04 4.71± 0.05
6 7.46± 0.01 3.93± 0.02 3.44± 0.02
7 2.90± 0.00 3.00± 0.00 2.36± 0.03

Mem (MiB)
1,6,7 6.12 10.98 5.67
2 14.50 18.18 9.26
3 9.70 18.18 5.67
4,5 9.70 10.97 5.67

architecture to leave more room for possible improvement
when using this sparse target. The version of sigprop is 2b
with the Lpred loss. We use the CIFAR10 dataset with the
same configuration as in Section IV. We see that the network’s
training speed increased and memory usage decreased Fig.
III,IV, with negligible change in accuracy.

V. IN CONTINUOUS TIME

We demonstrate that sigprop can train a neural model in
the continuous setting using a Hebbian update mechanism, in
addition to the discrete setting. Biological neural networks work
in continuous time, have no indication of different dynamics
in inference and learning, and use Hebbian based learning.
Sigprop improves learning in this scenerio by bringing a
global learning signal into Hebbian based learning, without
the comprehensive feedback connectivity to neurons and layers

TABLE III
EFFICIENCY OF TARGETS OVER ALL LAYERS ON CIFAR-10 FOR

VGG8B(2X). TRAINING TIME PER SAMPLE, MAXIMUM MEMORY USAGE
PER BATCH

Dense Sparse

Time (s) 14.48± 54.29 9.56± 29.02
Mem (MiB) 14.04± 6.39 10.74± 65.10
Best Epoch 273(207) 340(219)
Test Error (%) 7.60 7.71

TABLE IV
EFFICIENCY OF TARGETS PER LAYER ON CIFAR-10 FOR VGG8B(2X).
TRAINING TIME PER SAMPLE AND MAXIMUM MEMORY USAGE PER

BATCH

Layer Time s (Mem MiB)
Dense Sparse

1 12.85± 5.66 (12.99) 7.42± 0.79 (6.34)
2 21.51± 9.31 (20.23) 19.70± 0.18 (27.53)
3 18.81± 5.50 (13.02) 9.30± 0.39 (9.41)
4 25.30± 12.97 (13.02) 14.19± 0.12 (15.99)
5 9.69± 1.86 (13.02) 8.84± 0.11 (9.10)
6 8.11± 3.16 (13.02) 5.24± 0.08 (6.15)
7 5.06± 1.61 (12.99) 2.25± 0.07 (0.68)

that previous approaches require, not observed in biological
networks. In addition, sigprop improves compatibility for
learning in hardware, such as neuromorphic chips, which
have resource and design constraints that limit backward
connectivity.

In the model presented in this section, the target generator
is conditioned on the activations of the output layer to produce
a feedback loop - Fig. 2c. The feedback loop is always
active, during training and inference. With this feedback loop,
we demonstrate in section V-A that sigprop provides useful
learning signals by bringing forward and feedback loop weights

