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Abstract

Artificialneuralnetworksaremostcommonlytrainedwiththeback-propagation
algorithm,wherethegradientforlearningisprovidedbyback-propagatingtheerror,
layerbylayer,fromtheoutputlayertothehiddenlayers.Arecentlydiscovered
methodcalledfeedback-alignmentshowsthattheweightsusedforpropagatingthe
errorbackwarddon’thavetobesymmetricwiththeweightsusedforpropagation
theactivationforward.Infact,randomfeedbackweightsworkevenlywell,because
thenetworklearnshowtomakethefeedbackuseful.Inthiswork,thefeedback
alignmentprincipleisusedfortraininghiddenlayersmoreindependentlyfrom
therestofthenetwork,andfromazeroinitialcondition.Theerrorispropagated
throughfixedrandomfeedbackconnectionsdirectlyfromtheoutputlayertoeach
hiddenlayer.Thissimplemethodisabletoachievezerotrainingerrorevenin
convolutionalnetworksandverydeepnetworks,completelywithouterrorback-
propagation.Themethodisasteptowardsbiologicallyplausiblemachinelearning
becausetheerrorsignalisalmostlocal,andnosymmetricorreciprocalweights
arerequired.ExperimentsshowthatthetestperformanceonMNISTandCIFAR
isalmostasgoodasthoseobtainedwithback-propagationforfullyconnected
networks.Ifcombinedwithdropout,themethodachieves1.45%erroronthe
permutationinvariantMNISTtask.

1Introduction

Forsupervisedlearning,theback-propagationalgorithm(BP),see[2],hasachievedgreatsuccessin
trainingdeepneuralnetworks.Astoday,thismethodhasfewrealcompetitorsduetoitssimplicity
andprovenperformance,althoughsomealternativesdoexist.

Boltzmannmachinelearningindifferentvariantsarebiologicallyinspiredmethodsfortrainingneural
networks,see[6],[10]and[5].Themethodsuseonlylocalavailablesignalsforadjustingtheweights.
ThesemethodscanbecombinedwithBPfine-tuningtoobtaingooddiscriminativeperformance.

ContrastiveHebbianLearning(CHL),issimilartoBoltzmannMachinelearning,butcanbeused
indeterministicfeed-forwardnetworks.Inthecaseofweaksymmetricfeedback-connectionsit
resemblesBP[16].

Recently,target-propagation(TP)wasintroducedasanbiologicallyplausibletrainingmethod,where
eachlayeristrainedtoreconstructthelayerbelow[7].Thismethoddoesnotrequiresymmetric
weightsandpropagatestargetvaluesinsteadofgradientsbackward.

Anoveltrainingprinciplecalledfeedback-alignment(FA)wasrecentlyintroduced[9].Theauthors
showthatthefeedbackweightsusedtoback-propagatethegradientdonothavetobesymmetricwith
thefeed-forwardweights.Thenetworklearnshowtousefixedrandomfeedbackweightsinorderto
reducetheerror.Essentially,thenetworklearnshowtolearn,andthatisareallypuzzlingresult.
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Back-propagation with asymmetric weights was also explored in [8]. One of the conclusions from
this work is that the weight symmetry constraint can be significantly relaxed while still retaining
strong performance.

The back-propagation algorithm is not biologically plausible for several reasons. First, it requires
symmetric weights. Second, it requires separate phases for inference and learning. Third, the learning
signals are not local, but have to be propagated backward, layer-by-layer, from the output units. This
requires that the error derivative has to be transported as a second signal through the network. To
transport this signal, the derivative of the non-linearities have to be known.

All mentioned methods require the error to travel backward through reciprocal connections. This is
biologically plausible in the sense that cortical areas are known to be reciprocally connected [3]. The
question is how an error signal is relayed through an area to reach more distant areas. For BP and FA
the error signal is represented as a second signal in the neurons participating in the forward pass. For
TP the error is represented as a change in the activation in the same neurons. Consider the possibility
that the error in the relay layer is represented by neurons not participating in the forward pass. For
lower layers, this implies that the feedback path becomes disconnected from the forward path, and
the layer is no longer reciprocally connected to the layer above.

The question arise whether a neuron can receive a teaching signal also through disconnected feedback
paths. This work shows experimentally that directly connected feedback paths from the output layer
to neurons earlier in the pathway is sufficient to enable error-driven learning in a deep network. The
requirements are that the feedback is random and the whole network is adapted. The concept is
quite different from back-propagation, but the result is very similar. Both methods seem to produce
features that makes classification easier for the layers above.

Figure 1c) and d) show the novel feedback path configurations that is further explored in this work.
The methods are based on the feedback alignment principle and is named "direct feedback-alignment"
(DFA) and "indirect feedback-alignment" (IFA).

Figure 1: Overview of different error transportation configurations. Grey arrows indicate activation
paths and black arrows indicate error paths. Weights that are adapted during learning are denoted as
Wi, and weights that are fixed and random are denoted as Bi. a) Back-propagation. b) Feedback-
alignment. c) Direct feedback-alignment. d) Indirect feedback-alignment.

2 Method

Let (x, y) be mini-batches of input-output vectors that we want the network to learn. For simplicity,
assume that the network has only two hidden layers as in Figure 1, and that the target output y is
scaled between 0 and 1. Let the rows in Wi denote the weights connecting the layer below to a
unit in hidden layer i, and let bi be a column vector with biases for the units in hidden layer i. The
activations in the network are then calculated as

a1 =W1x+ b1, h1 = f(a1) (1)

a2 =W2h1 + b2, h2 = f(a2) (2)
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ay=W3h2+b3,ŷ=fy(ay)(3)

wheref()isthenon-linearityusedinhiddenlayersandfy()thenon-linearityusedintheoutput
layer.Ifwechoosealogisticactivationfunctionintheoutputlayerandabinarycross-entropyloss
function,thelossforamini-batchwithsizeNandthegradientattheoutputlayerearecalculatedas

J=−
1

N

∑

m,n

ymnlogŷmn+(1−ymn)log(1−ŷmn)(4)

e=δay=
∂J

∂ay
=ŷ−y(5)

wheremandnareoutputunitandmini-batchindexes.FortheBP,thegradientsforhiddenlayersare
calculatedas

δa2=
∂J

∂a2
=(W

T
3e)�f′(a2),δa1=

∂J

∂a1
=(W

T
2δa2)�f′(a1)(6)

where�isanelement-wisemultiplicationoperatorandf′()isthederivativeofthenon-linearity.
Thisgradientisalsocalledsteepestdescent,becauseitdirectlyminimizesthelossfunctiongiventhe
linearizedversionofthenetwork.ForFA,thehiddenlayerupdatedirectionsarecalculatedas

δa2=(B2e)�f′(a2),δa1=(B1δa2)�f′(a1)(7)

whereBiisafixedrandomweightmatrixwithappropriatedimension.ForDFA,thehiddenlayer
updatedirectionsarecalculatedas

δa2=(B2e)�f′(a2),δa1=(B1e)�f′(a1)(8)

whereBiisafixedrandomweightmatrixwithappropriatedimension.Ifallhiddenlayershavethe
samenumberofneurons,Bicanbechosenidenticalforallhiddenlayers.ForIFA,thehiddenlayer
updatedirectionsarecalculatedas

δa2=(W2δa1)�f′(a2),δa1=(B1e)�f′(a1)(9)

whereB1isafixedrandomweightmatrixwithappropriatedimension.Ignoringthelearningrate,the
weightupdatesforallmethodsarecalculatedas

δW1=−δa1x
T
,δW2=−δa2h

T
1,δW3=−eh

T
2(10)

3Theoreticalresults

BPprovidesagradientthatpointsinthedirectionofsteepestdescentinthelossfunctionlandscape.
FAprovidesadifferentupdatedirection,butexperimentalresultsindicatethatthemethodisable
toreducetheerrortozeroinnetworkswithnon-linearhiddenunits.Thisissurprisingbecausethe
principleisdistinctdifferentfromsteepestdescent.ForBP,thefeedbackweightsarethetransposeof
theforwardweights.ForFAthefeedbackweightsarefixed,butiftheforwardweightsareadapted,
theywillapproximatelyalignwiththepseudoinverseofthefeedbackweightsinordertomakethe
feedbackuseful[9].

Thefeedback-alignmentpaper[9]provesthatfixedrandomfeedbackasymptoticallyreducesthe
errortozero.Theconditionsforthistohappenarefreelyrestatedinthefollowing.1)Thenetworkis
linearwithonehiddenlayer.2)Theinputdatahavezeromeanandstandarddeviationone.3)The
feedbackmatrixBsatisfiesB

+
B=IwhereB

+
istheMoore-Penrosepseudo-inverseofB.4)The

forwardweightsareinitializedtozero.5)Theoutputlayerweightsareadaptedtominimizetheerror.
Let’scallthisnovelprinciplethefeedbackalignmentprinciple.

Itisnotclearhowthefeedbackalignmentprinciplecanbeappliedtoanetworkwithseveralnon-
linearhiddenlayers.Theexperimentsin[9]showthatmorelayerscanbeaddediftheerroris
back-propagatedlayer-by-layerfromtheoutput.

Thefollowingtheorempointsatamechanismthatcanexplainthefeedbackalignmentprinciple.
Themechanismexplainshowanasymmetricfeedbackpathcanprovidelearningbyaligningthe
back-propagatedandforwardpropagatedgradientswithit’sown,undertheassumptionofconstant
updatedirectionsforeachdatapoint.
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Theorem 1. Given 2 hidden layers k and k + 1 in a feed-forward neural network where k connects
to k+1. Let hk and hk+1 be the hidden layer activations. Let the functional dependency between the
layers be hk+1 = f(ak+1), where ak+1 =Whk + b. Here W is a weight matrix, b is a bias vector
and f() is a non-linearity. Let the layers be updated according to the non-zero update directions
δhk and δhk+1 where δhk

‖δhk‖ and δhk+1

‖δhk+1‖ are constant for each data point. The negative update
directions will minimize the following layer-wise criterion

K = Kk +Kk+1 =
δhTk hk
‖δhk‖

+
δhTk+1hk+1

‖δhk+1‖
(11)

Minimizing K will maximize the gradient maximizing the alignment criterion

L = Lk + Lk+1 =
δhTk ck
‖δhk‖

+
δhTk+1ck+1

‖δhk+1‖
(12)

where

ck =
∂hk+1

∂hk
δhk+1 =WT (δhk+1 � f ′(ak+1)) (13)

ck+1 =
∂hk+1

∂hTk
δhk = (Wδhk)� f ′(ak+1) (14)

If Lk > 0, then is −δhk a descending direction in order to minimize Kk+1.

Proof. Let i be the any of the layers k or k + 1. The prescribed update −δhi is the steepest descent
direction in order to minimize Ki because by using the product rule and the fact that any partial
derivative of δhi

‖δhi‖ is zero we get

− ∂Ki

∂hi
= − ∂

∂hi

[
δhTi hi
‖δhi‖

]
= − ∂

∂hi

[
δhi
‖δhi‖

]
hi −

∂hi
∂hi

δhi
‖δhi‖

= −0hi −
δhi
‖δhi‖

= −αiδhi (15)

Here αi = 1
‖δhi‖ is a positive scalar because δhi is non-zero. Let δai be defined as δai = ∂hi

∂ai
δhi =

δhi � f ′(ai) where ai is the input to layer i. Using the product rule again, the gradients maximizing
Lk and Lk+1 are

∂Li
∂ci

=
∂

∂ci

[
δhTi ci
‖δhi‖

]
=

∂

∂ci

[
δhi
‖δhi‖

]
ci +

∂ci
∂ci

δhi
‖δhi‖

= 0ci +
δhi
‖δhi‖

= αiδhi (16)

∂Lk+1

∂W
=
∂Lk+1

∂ck+1

∂ck+1

∂W
= αk+1(δhk+1 � f ′(ak+1))δh

T
k = αk+1δak+1δh

T
k (17)

∂Lk
∂W

=
∂ck
∂WT

∂Lk
∂cTk

= (δhk+1 � f ′(ak+1))αkδh
T
k = αkδak+1δh

T
k (18)

Ignoring the magnitude of the gradients we have ∂L
∂W = ∂Lk

∂W = ∂Lk+1

∂W . If we project hi onto δhi we

can write hi =
hT
i δhi

‖δhi‖2 δhi + hi,res = αiKiδhi + hi,res. For W , the prescribed update is

δW = −δhk+1
∂hk+1

∂W
= −(δhk+1�f ′(ak+1))h

T
k = −δak+1h

T
k = −δak+1(αkKkδhk+hk,res)

T =

− αkKkδak+1δh
T
k − δak+1h

T
k,res = −Kk

∂Lk
∂W

− δak+1h
T
k,res (19)

We can indirectly maximizeLk andLk+1 by maximizing the component of ∂Lk

∂W in δW by minimizing
Kk. The gradient to minimize Kk is the prescribed update −δhk.

Lk > 0 implies that the angle β between δhk and the back-propagated gradient ck is within 90◦ of
each other because cos(β) = cTk δhk

‖ck‖‖δhk‖ = Lk

‖ck‖ > 0 ⇒ |β| < 90◦. Lk > 0 also implies that ck is
non-zero and thus descending. Then δhk will point in a descending direction because a vector within
90◦ of the steepest descending direction will also point in a descending direction.
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Itisimportanttonotethatthetheoremdoesn’ttellthatthetrainingwillconvergeorreduceanyerror
tozero,butifthefakegradientissuccessfulinreducingK,thenwillthisgradientalsoincludea
growingcomponentthattriestoincreasethealignmentcriterionL.

Thetheoremcanbeappliedtotheoutputlayerandthelasthiddenlayerinaneuralnetwork.To
achieveerror-drivenlearning,wehavetoclosethefeedbackloop.Thenwegettheupdatedirections
δhk+1=

∂J
∂ay=eandδhk=Gk(e)whereGk(e)isafeedbackpathconnectingtheoutputtothe

hiddenlayer.TheprescribedupdatewilldirectlyminimizethelossJgivenhk.IfLkturnspositive,
thefeedbackwillprovideaupdatedirectionδhk=Gk(e)thatreducesthesameloss.Thetheorem
canbeappliedsuccessivelytodeeperlayers.Foreachlayeri,theweightmatrixWiisupdatedto
minimizeKi+1inthelayerabove,andatthesametimeindirectlymakeit’sownupdatedirection
δhi=Gi(e)useful.

Theorem1suggeststhatalargeclassofasymmetricfeedbackpathscanprovideadescendinggradient
directionforahiddenlayer,aslongasonaverageLi>0.ChoosingfeedbackpathsGi(e),visiting
everylayeronit’swaybackward,withweightsfixedandrandom,givesustheFAmethod.Choosing
directfeedbackpathsGi(e)=Bie,withBifixedandrandom,givesustheDFAmethod.Choosing
adirectfeedbackpathG1(e)=B1econnectingtothefirsthiddenlayer,andthenvisitingevery
layeronit’swayforward,givesustheIFAmethod.Theexperimentalsectionshowsthatlearningis
possibleevenwithindirectfeedbacklikethis.

Directrandomfeedbackδhi=Gi(e)=Biehastheadvantagethatδhiisnon-zeroforallnon-zeroe.
ThisisbecausearandommatrixBiwillhavefullrankwithaprobabilityverycloseto1.Anon-zero
δhiisarequirementinordertoachieveLi>0.Keepingthefeedbackstaticwillensurethatthis
propertyispreservedduringtraining.Inaddition,astaticfeedbackcanmakeiteasiertomaximizeLi
becausethedirectionofδhiismoreconstant.Ifthecross-entropylossisused,andtheoutputtarget
valuesare0or1,thenthesignoftheerrorejforagivensamplejwillnotchange.Thismeansthat
thequantityBisign(ej)willbeconstantduringtrainingbecausebothBiandsign(ej)areconstant.
Ifthetaskistoclassify,thequantitywillinadditionbeconstantforallsampleswithinaclass.Direct
randomfeedbackwillalsoprovideaupdatedirectionδhiwithamagnitudethatonlyvarieswiththe
magnitudeoftheerrore.

Iftheforwardweightsareinitializedtozero,thenwillLi=0becausetheback-propagatederroris
zero.Thisseemslikeagoodstartingpointwhenusingasymmetricfeedbackbecausethefirstupdate
stepshavethepossibilitytoquicklyturnthisquantitypositive.Azeroinitialconditionishowevernot
arequirementforasymmetricfeedbacktowork.Oneoftheexperimentswillshowthatevenwhen
startingfromabadinitialcondition,directrandomandstaticfeedbackisabletoturnthisquantity
positiveandreducethetrainingerrortozero.

ForFAandBP,thehiddenlayergrowthisboundedbythelayersabove.Ifthelayersabovesaturate,
thehiddenlayerupdateδhibecomeszero.ForDFA,thehiddenlayerupdateδhiwillbenon-zeroas
longastheerroreisnon-zero.Tolimitthegrowth,asquashingnon-linearitylikehyperbolictangent
orlogisticsigmoidseemsappropriate.Ifweaddatanhnon-linearitytothehiddenlayer,thehidden
activationisboundedwithin[−1,1].Withzeroinitialweights,hiwillbezeroforalldatapoints.The
tanhnon-linearitywillnotlimittheinitialgrowthinanydirection.Theexperimentalresultsindicate
thatthisnon-linearityiswellsuitedtogetherwithDFA.

Ifthehyperbolictangentnon-linearityisusedinthehiddenlayer,theforwardweightscanbe
initializedtozero.Therectifiedlinearactivationfunction(ReLU)willnotworkwithzeroinitial
weightsbecausetheerrorderivativeforsuchaunitiszerowhenthebiasandincomingweightsare
allzero.

4Experimentalresults

ToinvestigateifDFAlearnsusefulfeaturesinthehiddenlayers,a3x400tanhnetworkwastrained
onMNISTwithbothBPandDFA.Theinputtestimagesandresultingfeatureswerevisualizedusing
t-SNE[15],seeFigure3.Bothmethodslearnsfeaturesthatmakesiteasiertodiscriminatebetween
theclasses.Atthethirdhiddenlayer,theclustersarewellseparated,exceptforsomestraypoints.
ThevisibleimprovementinseparationfrominputtofirsthiddenlayerindicatesthaterrorDFAis
abletolearnusefulfeaturesalsoindeeperhiddenlayers.

5

toseeifasinglefeedbacklooplikeinFigure1d),wasabletotrainadeepnetworkwith4hidden
layersof100neuronseach.Thefeedbackwasconnectedtothefirsthiddenlayer,andallhidden
layersaboveweretrainedwiththeupdatedirectionforward-propagatedthroughthisloop.Starting
fromarandominitialization,thetrainingerrorreducedto0%,andthetesterrorreducedto3.9%.

5Discussion

TheexperimentalresultsindicatethatDFAisabletofitthetrainingdataequallygoodasBPandFA.
TheperformanceonthetestsetissimilartoFAbutlaggingalittlebehindBP.Fortheconvolutional
network,BPisclearlythebestperformer.AddingregularizationseemstohelpmoreforDFAthan
forFA.

OnlyDFAwassuccessfulintraininganetworkwith100hiddenlayers.Ifproperweightinitialization
isused,BPisabletotrainverydeepnetworksaswell[13][11].ThereasonwhyBPfailstoconverge
isprobablytheverysimpleinitializationschemeusedhere.ProperinitializationmighthelpFAina
similarway,butthiswasnotinvestigatedanyfurther.

TheDFAtrainingprocedurehasalotincommonwithsupervisedlayer-wisepre-trainingofadeep
network,butwithanimportantdifference.Ifalllayersaretrainedsimultaneously,itistheerroratthe
topofadeepnetworkthatdrivesthelearning,nottheerrorinashallowpre-trainingnetwork.

Ifthenetworkaboveatargethiddenlayerisnotadapted,FAandDFAwillnotgiveanimprovement
intheloss.ThisisincontrasttoBPthatisabletodecreasetheerroreveninthiscasebecausethe
feedbackdependsontheweightsandlayersabove.

DFAdemonstratesanovelapplicationofthefeedbackalignmentprinciple.Thebrainmayormaynot
implementthiskindoffeedback,butitisasteptowardsbetterbetterunderstandingmechanismsthat
canprovideerror-drivenlearninginthebrain.DFAshowsthatlearningispossibleinfeedbackloops
wheretheforwardandfeedbackpathsaredisconnected.Thisintroducesalargeflexibilityinhowthe
errorsignalmightbetransmitted.Aneuronmightreceiveit’serrorsignalsviaapost-synapticneuron
(BP,CHL),viaareciprocallyconnectedneuron(FA,TP),directlyfromapre-synapticneuron(DFA),
orindirectlyfromanerrorsourcelocatedseveralsynapsesawayearlierintheinformationalpathway
(IFA).

Disconnectedfeedbackpathscanleadtomorebiologicallyplausiblemachinelearning.Ifthefeedback
signalisaddedtothehiddenlayersbeforethenon-linearity,thederivativeofthenon-linearitydoes
nothavetobeknown.Thelearningrulebecomeslocalbecausetheweightupdateonlydependson
thepre-synapticactivityandthetemporalderivativeofthepost-synapticactivity.Learningisnota
separatephase,butperformedattheendofanextendedforwardpass.Theerrorsignalisnotasecond
signalintheneuronsparticipatingintheforwardpass,butaseparatesignalrelayedbyotherneurons.
ThelocalupdaterulecanbelinkedtoSpike-Timing-DependentPlasticity(STDP)believedtogovern
synapticweightupdatesinthebrain,see[1].

Disconnectedfeedbackpathshavegreatsimilaritieswithcontrollersusedindynamicalcontrolloops.
Thepurposeofthefeedbackistoprovideachangeinthestatethatreducestheoutputerror.Fora
dynamicalcontrolloop,thechangeisaddedtothestateandpropagatedforwardtotheoutput.Fora
neuralnetwork,thechangeisusedtoupdatetheweights.

6Conclusion

Abiologicallyplausibletrainingmethodbasedonthefeedbackalignmentprincipleispresentedfor
trainingneuralnetworkswitherrorfeedbackratherthanerrorback-propagation.Inthismethod,
neithersymmetricweightsnorreciprocalconnectionsarerequired.Theerrorpathsareshortand
enablestrainingofverydeepnetworks.Thetrainingsignalsarelocaloravailableatmostonesynapse
away.Noweightinitializationisrequired.

ThemethodwasabletofitthetrainingsetonallexperimentsperformedonMNIST,Cifar-10and
Cifar-100.Theperformanceonthetestsetslagsalittlebehindback-propagation.

Mostimportantly,thisworksuggeststhattherestrictionenforcedbyback-propagationandfeedback-
alignment,thatthebackwardpasshavetovisiteveryneuronfromtheforwardpass,canbediscarded.
Learningispossibleevenwhenthefeedbackpathisdisconnectedfromtheforwardpath.

8



Figure 2: Left: Error curves for a network pre-trained with a frozen first hidden layer. Right: Error
curves for normal training of a 2x800 tanh network on MNIST.

Figure 3: t-SNE visualization of MNIST input and features. Different colors correspond to different
classes. The top row shows features obtained with BP, the bottom row shows features obtained with
DFA. From left to right: input images, first hidden layer features, second hidden layer features and
third hidden layer features.

Furthermore, another experiment was performed to see if error DFA is able to learn useful hidden
representations in deeper layers. A 3x50 tanh network was trained on MNIST. The first hidden layer
was fixed to random weights, but the 2 hidden layers above were trained with BP for 50 epochs. At
this point, the training error was about 5%. Then, the first hidden layer was unfreezed and training
continued with BP. The training error decreased to 0% in about 50 epochs. The last step was repeated,
but this time the unfreezed layer was trained with DFA. As expected because of different update
directions, the error first increased, then decreased to 0% after about 50 epochs. The error curves are
presented in Figure2(Left). Even though the update direction provided by DFA is different from the
back-propagated gradient, the resulting hidden representation reduces the error in a similar way.

Several feed-forward networks were trained on MNIST and CIFAR to compare the performance
of DFA with FA and BP. The experiments were performed with the binary cross-entropy loss and
optimized with RMSprop [14]. For the MNIST dropout experiments, learning rate with decay and
training time was chosen based on a validation set. For all other experiments, the learning rate was
roughly optimized for BP and then used for all methods. The learning rate was constant for each
dataset. Training was stopped when training error reached 0.01% or the number of epochs reached
300. A mini-batch size of 64 was used. No momentum or weight decay was used. The input data
was scaled to be between 0 and 1, but for the convolutional networks, the data was whitened. For
FA and DFA, the weights and biases were initialized to zero, except for the ReLU networks. For BP
and/or ReLU, the initial weights and biases were sampled from a uniform distribution in the range

6

[−1/√fanin, 1/√fanin]. The random feedback weights were sampled from a uniform distribution
in the range [−1/√fanout, 1/√fanout].

MODEL BP FA DFA

7x240 Tanh 2.16± 0.13% 2.20± 0.13% (0.02%) 2.32± 0.15% (0.03%)
100x240 Tanh 3.92± 0.09% (0.12%)
1x800 Tanh 1.59± 0.04% 1.68± 0.05% 1.68± 0.05%
2x800 Tanh 1.60± 0.06% 1.64± 0.03% 1.74± 0.08%
3x800 Tanh 1.75± 0.05% 1.66± 0.09% 1.70± 0.04%
4x800 Tanh 1.92± 0.11% 1.70± 0.04% 1.83± 0.07% (0.02%)
2x800 Logistic 1.67± 0.03% 1.82± 0.10% 1.75± 0.04%
2x800 ReLU 1.48± 0.06% 1.74± 0.10% 1.70± 0.06%
2x800 Tanh + DO 1.26± 0.03% (0.18%) 1.53± 0.03% (0.18%) 1.45± 0.07% (0.24%)
2x800 Tanh + ADV 1.01± 0.08% 1.14± 0.03% 1.02± 0.05% (0.12%)

Table 1: MNIST test error for back-propagation (BP), feedback-alignment (FA) and direct feedback-
alignment (DFA). Training error in brackets when higher than 0.01%. Empty fields indicate no
convergence.

The results on MNIST are summarized in Table 1. For adversarial regularization (ADV), the
networks were trained on adversarial examples generated by the "fast-sign-method" [4]. For dropout
regularization (DO) [12], a dropout probability of 0.1 was used in the input layer and 0.5 elsewhere.
For the 7x240 network, target propagation achieved an error of 1.94% [7]. The results for all
three methods are very similar. Only DFA was able to train the deepest network with the simple
initialization used. The best result for DFA matches the best result for BP.

MODEL BP FA DFA

1x1000 Tanh 45.1± 0.7% (2.5%) 46.4± 0.4% (3.2%) 46.4± 0.4% (3.2%)
3x1000 Tanh 45.1± 0.3% (0.2%) 47.0± 2.2% (0.3%) 47.4± 0.8% (2.3%)
3x1000 Tanh + DO 42.2± 0.2% (36.7%) 46.9± 0.3% (48.9%) 42.9± 0.2% (37.6%)
CONV Tanh 22.5± 0.4% 27.1± 0.8% (0.9%) 26.9± 0.5% (0.2%)

Table 2: CIFAR-10 test error for back-propagation (BP), feedback-alignment (FA) and direct feedback-
alignment (DFA). Training error in brackets when higher than 0.1%.

The results on CIFAR-10 are summarized in Table 2. For the convolutional network the error was
injected after the max-pooling layers. The model was identical to the one used in the dropout paper
[12], except for the non-linearity. For the 3x1000 network, target propagation achieved an error of
49.29% [7]. For the dropout experiment, the gap between BP and DFA is only 0.7%. FA does not
seem to improve with dropout. For the convolutional network, DFA and FA are worse than BP.

MODEL BP FA DFA

1x1000 Tanh 71.7± 0.2% (38.7%) 73.8± 0.3% (37.5%) 73.8± 0.3% (37.5%)
3x1000 Tanh 72.0± 0.3% (0.2%) 75.3± 0.1% (0.5%) 75.9± 0.2% (3.1%)
3x1000 Tanh + DO 69.8± 0.1% (66.8%) 75.3± 0.2% (77.2%) 73.1± 0.1% (69.8%)
CONV Tanh 51.7± 0.2% 60.5± 0.3% 59.0± 0.3%

Table 3: CIFAR-100 test error for back-propagation (BP), feedback-alignment (FA) and direct
feedback-alignment (DFA). Training error in brackets when higher than 0.1%.

The results on CIFAR-100 are summarized in Table 3. DFA improves with dropout, while FA does
not. For the convolutional network, DFA and FA are worse than BP.

The above experiments were performed to verify the DFA method. The feedback loops are the
shortest possible, but other loops can also provide learning. An experiment was performed on MNIST
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