Chapter 11

Lecture: Spherical Black Holes

One of the most spectacular consequences of general itgl&ithe
prediction that gravitational fields can become so stroagttiey can
effectively trap even light.

e Space becomes so curved that there are no paths for ligbit to f
low from an interior to exterior region.

» Such objects are calldidack holesand there is extremely strong
circumstantial evidence that they exist.

* In this chapter we apply the Einstein theory of gravity te ithea
of black holes using the Schwarzschild solution.

* In the next chapter we shall take a first step in considerow h
gravitational physics is altered if the principles of quantme-
chanics come into playHawking black holek

* In the chapter after that we shall consider how the Schwirizs
solution is modified if a black hole is assumed to possesslangu
momentum Kerr black holeg
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11.1 Schwarzschild Black Holes

There is an event horizon in the Schwarzschild spacetime
atrg = 2M, which implies a black hole inside the event
horizon (escape velocity exceer)s

Place analysis on firmer ground by considering a spacegqiafoach-
ing the event horizon in free fall (engines off).

» For simplicity, we assume the trajectory to be radial.
e Consider from two points of view

1. From a very distant point at constant distance from thekbla
hole (professors with martinis).

2. From a point inside the spacecraft (students).

» Use the Schwarzschild solution (metric) for analysis.
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11.1.1 Approaching the Event Horizon: Outside View

We consider only radial motion. Settirdf = d¢ = 0 in the line
element

-1
d = —dré = — (1—27'\/') dt? + <1—27M) dr?

() (1) o

» As the spacecraft approaches the event horizon its velasit
viewed from the outside in a fixed framevis= dr/dt.

» Light signals from spacecraft travel on the light cqde’ = 0)
and thus from the line element

» As viewed from a distance outsidg the spacecraft appears to
slow as it approachels; and eventually stops as— re.

* Thus, from the exterior we would never see the spacecrasiscr
rs: its image would remain frozen at= rg for all eternity.
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But let us examine what this means a little more carefullywite

%: (1_% - ds 1—drrs/r‘

» Asr — rgtime between successive wave crests for the light wave
coming from the spacecraft tends to infinity and therefore

A — o v—0 E — 0.
* The external observer not only sees the spacecraft slodlyap

as it approachas, but the spacecraftimage is observeditongly
redshiftat the same time.

» This behavior is just that of the coordinate time alreadgnsier
a test particle in radial free fall:

Schwarzschild

coordinate time t
Proper

timet
riM

rs=2M

-Time/M

» Therefore, more properly, the external observation i$ tha
spacecraft approachings rapidly slows and redshifts until the
image fades from view before the spacecraft reaches
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11.1.2 Approaching the Event Horizon: Spacecraft View

Things are very different as viewed by the (doomed) studizata
the interior of the spacecratft.

* The occupants will use their own clocka¢asuring proper time
to gauge the passage of time.

« Starting from a radial positiony outside the event horizon, the
spacecraft will reach the origin in a proper time

2 rg/z

3(2m)1/2

» The spacecraft occupants will generally notice no spamesin-
gularity at the horizon.

» Any tidal forces at the horizon may be very large but will @m
finite (Riemann curvature is finite at the Schwarzschild radius

» The spacecraft crosses and reaches the (real) singularity at
r = 0in a finite amount of time, where it would encounter in-
finite tidal forces Riemann curvature has components that be-
come infinite at the origin

* The trip fromrs to the singularity is very fast (Exercise):

1. Of orderl0—4 secondsor stellar-mass black holes.
2. Of orderl0 minutedor a billion solar mass black hole.
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11.1.3 Lightcone Description of a Trip to a Black Hole

It is highly instructive to consider a lightcone descriptif a trip into
a Schwarzschild black hole.

o Assuming radial light rays
dd =dp =ds>=0

the line element reduces to
2M oM\ 1
ds? = — (1— T) dt + <1— T) dr?=0,

» Thus the equation for the lightcone at some local coordinat
the Schwarzschild metric can be read directly from the metri

-1
ﬁzi(l_%) _
dr r

- The plus sign corresponds to outgoing photarie¢reasing
with time forr > 2M)

where

- The minus sign to ingoing photons decreasing with time
forr > 2M)

 For larger

becomes equal t&xr1, as for flat spacetime.

* However as — rg the forward lightcone opening angle tends to
zero agdt/dr — co.
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Time

r72M

Figure 11.1Photon paths and lightcone structure of the Schwarzsobildetime.

Integrating

gives

—r —2MIn|r — 1| 4+ constant (Ingoing)
t =

r+2Min|r — 1| 4+ constant (Outgoing)

» The null geodesics defined by this expression are plottBayiri1.1.

» The tangents at the intersections of the dashed and sudisl die-

fine local lightcones correspondingdt/dr, which are sketched
at some representative spacetime points.
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Figure 11.2:Light cone description of a trip into a Schwarzschild blackeh

* The worldline of a spacecratt is illustrated in Fig. 11.&r8ng
well exterior to the black hole. The gravitational field thes
weak and the light cone has the usual symmetric appearance.

* As illustrated by the dotted line from A, a light signal etad
from the spacecraft can intersect the worldline of an oleserv

remaining at constant distancg, at a finite timet, > to.

» As the spacecratft falls toward the black hole on the wartlli
indicated the forward light cone begins to narrow since

-1
d_s(i2)7
dr r
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* Now, at B a light signal can intersect the external obsemaetd-
line only at a distant point in the future (arrow on light cde

» As the spacecraft approaches the opening angle of the for-
ward light cone tends to zero and a signal emitted from the
spacecraft tends towaidfinite timeto reach the external ob-
server’s worldline at,,s (arrow on light cone C)The external
observer sees infinite redshift.



270 CHAPTER 11. LECTURE: SPHERICAL BLACK HOLES

gn

+
r=2M

Guv riM

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[l
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Figure 11.3:Spacelike and timelike regions fgso andgs1 in the Schwarzschild
metric.

Now consider light cones interior to the event horizon.

* From the structure of the radial and time parts of the Schsdnild
metric illustrated in Fig. 11.3, we observe thintanddt reverse
their character at the horizon£ 2M) because the metric coef-
ficientsggg andgy; switch signsat that point

1. Outside the event horizon thelirection,d/dt, is timelike
(oo < 0) and ther direction,d/dr, is spacelikedi1 > 0).

2. Inside the event horizo/dt is spacelike ggo > 0) and
d/0dr is timelike @11 < 0).

 Thus inside the event horizon the lightcones get rotated 2/
relative to outsidegpace— time).
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* The worldline of the spacecraft descends ingigbecause the
coordinate time decreases (it is now behaving likeand the
decrease im represents the passage of time, butghwper time
Is continuously increasing in this region.

 Outside the horizom is a spacelike coordinate and application
of enough rocket power can reverse the infall and nralkegin
to increase.

* Inside the horizom is a timelike coordinate and no application
of rocket power can reverse the direction of time.

» Thus, the radial coordinate of the spacecraft must deeraase
inside the horizon, for the same reason that time flows irgo th
future in normal experience (whatever that reason is!).
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* Inside the horizon there are no paths in the forward liginiecof
the spacecraft that can reach the external observg(tie right
vertical axis)—see the light cones labeled D and E.

All timelike and null paths inside the hori-
zon are bounded by the horizon and must en-

counter the singularity at= 0.

 This illustrates succinctly the real reason that nothiag escape
the interior of a black holeDynamics (building a better rocket)
are irrelevant:once inside s the geometry of spacetime permits
no forward light cones that intersect exterior regions, @mébr-
ward light cones that can avoid the origin.
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Thus, there is no escape from the classical Schwarzschild
black hole once inside the event horizon because

1. There are literally no paths in spacetime that go frgm
the interior to the exterior.

2. All timelike or null paths within the horizon lead tg
the singularity at = 0.

“You can check out any time you want,
But you can never leave!”

Hotel California
The Eagles

But notice the adjective “classical” ... More later.
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11.1.4 Eddington—Finkelstein Coordinates

The preceding discussion is illuminating but the interpre-
tation of the results is complicated by the behavior near
the coordinate singularity at= 2M.

* In this section and the next we discuss two alterna-
tive coordinate systems that remove the coordinate
singularity at the horizon.

» Although these coordinate systems have advan-
tages for interpreting the interior behavior of the
Schwarzschild geometry, the standard coordinates
remain useful for describing the exterior behavior be-
cause of their simple asymptotic behavior.

In the Eddington—Finkelstein coordinate systemmew variablev is
introduced through

t= v —r—2Mln
new

I
1
‘ZM !

wherer, t, andM have their usual meanings in the Schwarzschild
metric, andd and¢ are assumed to be unchanged. For eithe2M

or r < 2M, insertion into the standard Schwarzschild line element
gives (Exercise)

ds = — (1— ﬁ) dV? + 2dvdr+ r2d6? + r?sir? 6d¢?.
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» The Schwarzschild metric expressed in these new coosdinat
d? = — (1— ZTM) dv? + 2dvdr+ r?d6? + r?sin? 6d¢>.

iIs manifestly non-singular at=2M
» The singularity at = 0 remains.

» Thus the singularity at the Schwarzschild radius oardinate
singularitythat can be removed by a new choice of coordinates.

Let us consider behavior of radial light rays expressed @sd¢hcoor-
dinates.

e Setdf = d¢ = 0 (radial motion)
« Setds® = 0 (light rays)

Then the Eddington—Finkelstein line element gives

- (1— ZTM) dv? + 2dvdr = 0.
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Figure 11.4:(a) Eddington—Finkelstein coordinates for the Schwariitbdilack
hole withr on the horizontal axis and—r on the vertical axis. Only two coordi-
nates are plotted, so each point corresponds to a 2-sphargyofar coordinates.
(b) Light cones in Eddington—Finkelstein coordinates.

This equation has two general solutions and one specidicolisee
Fig. 11.4(a)]:

- (1— ZTM) dv2 + 2dvdr = 0.

* General Solution 1:dv= 0, sov = constant — Ingoing light
rays on trajectories of constan{dashed lines Fig. 11.4(a)) .
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« General Solution 2if dv 0, then divide bydV? to give

-

1-— 2=
;

) d?+2dvdr=0 —

which yields upon integration

v_,

dr

This solution changes behaviorrat 2M:

1. Outgoingfor r > 2M.

—1
(1_%) |
r

v—2(r +2MIn ‘ﬁ = 1‘) = constant

2. Ingoingfor r < 2M (r decreases asincreases).

The long-dashed curves in Fig. 11.4(a) illustrate both imgo
and outgoing world-lines corresponding to this solution.
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» Special Solutionin the special case that= 2M, the differential
equation reduces to

_<1_T

2M

) dZ+2dvdr=0 — dvdr=0,

which corresponds to light trapped at the Schwarzschildisad
The vertical solid line at = 2M represents this solution.
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For every spacetime point in Fig. 11.4(a) there are tv
solutions.

<

0)

* For the points labeled 1 and 2 these correspond tojan
ingoing and outgoing solution.

» For point 3 one solution is ingoing and one corre-
sponds to light trapped at=rs.

* For point 4both solutions are ingoing
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The two solutions passing through a point determine the
light cone structure at that point (right side of figure).

» The light cones at various points are bounded by the two-solu
tions, so they tilt “inward” as decreases.

» The radial light ray that defines the left side of the lighheas
ingoing (general solution 1).

* If r £ 2M, the radial light ray defining the right side of the light
cone corresponds to general solution 2.

1. These propagate outward if- 2M.
2. Forr < 2M they propagateward.

* Forr < 2M the light cone is tilted sufficiently that no light ray
can escape the singularityrat 0.

o Atr =2M, one light ray moves inward; one is trapped at2M.
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The horizon may be viewed as a null surface generated by
the radial light rays that can neither escape to infinity nor
fall in to the singularity.
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11.1.5 Kruskal-Szekeres Coordinates

There is another set of coordinates exhibiting no singular-
ity at r = 2M: Kruskal-Szekeres coordinates.

* Introduce variablegv,u, 0, ¢), where@ and¢ have their usual
meaning and the new variablasndv are defined through

u= ( i 1) Y2 g am cosh<i> (r > 2M)

™M AM
(1) e sen(y) <
= (g 2) () a0
(1) e o<

» The corresponding line element is
32M° | om 2012 | 2 2
d§::—7—e (—dV? + du?) 4 r2d6? 4 r?sir? 6d¢>?,

wherer =r(u,V) is defined through

(G- 1)/ =22

* This metric is manifestly non-singular at 2M, but singular at
r=0.
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\
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Figure 11.5Kruskal-Szekeres coordinates. Only the two coordinaisdyv are
displayed; each point is really a 2-sphere in the variaBlaad¢.

Kruskal diagram:lines of constant andt plotted on au

andv grid. Figure 11.5 illustrates.
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284

\
Timelike

\
)/ worldline
\

\

e From the form of
) /M — 2 _\2,

r

—_ 1
(2|\/|

lines of constant are hyperbolae of constamt — v2.

* From the definitions ofi andv
V= utanh(m) (r >2M)
u
- = 2M).
tanh(t/4M) (r<2M)

Thus, lines of constarttare straight lines with slope

- tanh(t/4M) forr > 2M
- 1/tanh(t/4M) for r < 2M.
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Av

 Forradial light rays in Kruskal-Szekeres coordinat#s-€ d¢ =
ds = 0), and the line element

32m?® —r/2M 2402 | (2ci 2
dszzfe (—dV? + du?) 4 r2d6? + r?sir? 6d¢

yieldsdv= +du:

45 degree lightcones in thev parameters,
like flat space.

 Over the full range of Kruskal-Szekeres coordindtes, 6, ¢),
the metric componemyo = gy remains negative argi1 = guu,
022 = Ugg, andgsz = g¢¢ remain positive.

» Therefore, ther direction is always timelike and thedirection
Is always spacelike, in contrast to the normal Schwarzdcat
ordinates where andt switch their character at the horizon.
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Figure 11.6:A trip to the center of a black hole in standard Schwarzsatulor-
dinates and in Kruskal-Szekeres coordinates.

The identification of = 2M as an event horizon is partic+
ularly clear in Kruskal-Szekeres coordinates (Fig. 11.6).

» The light cones make 45-degree angles with the ver-

tical and the horizon also makes a 45-degree angle
with the vertical.

* Thus, for any point within the horizon, its forwarc
worldline mustcontain ther = 0 singularity anccan-
notcontain the = 2M horizon.
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Figure 11.7:Collapse to a Schwarzschild black hole.

Figure 11.7 illustrates a spherical mass distribution &g or exam-

ple) collapsing to a black hole as represented in Kruskak&zs
coordinates and in Eddington—Finkelstein coordinates.

A distant observer remains at fixedand observes light signals
sent periodically from the surface of the collapsing star.

* Light pulses, propagating on the dashed lines, arrive ragdo
and longer intervals as measured by the outside observer.

» At the horizon, light signals take an infinite length of tirtee
reach the external observer.

* Once the surface is inside the horizon, no signals can rémech
outside observer and the entire star collapses to the sintyul

* Note: the Schwarzschild solution is valid ontytsidethe star.
Inside GR applies but the solution is not Schwarzschild.
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11.2 Black Hole Theorems and Conjectures

In this section we summarize (in a non-rigorous way) a seheb1
rems and conjectures concerning black holes. Some we haasgl
used in various contexts.

 Singularity theoremsioosely, any gravitational collapse that
proceeds far enough results in a spacetime singularity.

» Cosmic censorship conjectureéill spacetime singularities are
hidden by event horizons1¢ naked singularitigs

* (Classical) area increase theorem:all classical processes in-
volving horizons, the area of the horizons can never deereas

» Second law of black hole thermodynamigghere quantum me-
chanics is important the classical area increase theoraet is
placed by

1. The entropy of a black hole is proportional to the surface
area of its horizon.

2. The total entropy of the Universe can never decrease an any
process.
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* The no-hair theorem/conjecturéf gravitational collapse to a
black hole is nearly spherical,

— All non-spherical parts of the mass distribution (quadtapo

moments, ...) except angular momentum are radiated away
as gravitational waves.

— Horizons eventually become stationary.

— A stationary black hole is characterized by three numbers:
the masdM, the angular momentud and the charg®.

— M, J, andQ are all determined by fieldsutsidethe horizon,
not by integrals over the interior.

The most general solution characterizedvbyd, andQ is
termed aKerr—Newman black holeHowever,

— It is likely that the astrophysical processes that

could form a black hole would neutralize any excess
charge.

— Thus astrophysical black holes are Kerr black holes
(the Schwarzschild solution being a special case|of
the Kerr solution for vanishing angular momentum).

The “No Hair Theorem”:black holes destroy all details
(the hai) about the matter that formed them, leaving be-

hind only global mass, angular momentum, and possibly
charge as observable external characteristics.
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* Birkhoff's theorem:The Schwarzschild solution is tloaly spher-
ically symmetric solution of the vacuum Einstein equatigfi$ie
static assumption is, in fact, a consequence of the spheyica
metry assumption

These theorems and conjectures place the mathematickftimées
on reasonably firm ground. To place thbysicsof black holes on
firm grounds, these ideas must be tested by observationhwiec
shall take up in Ch. 15.



