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Exercise 1. Classical ideal paramagnet

We consider an ideal paramagnet of magnetic moments in a magnetic field. The magnetic
moments have only two orientations, parallel and antiparallel to the magnetic field. The Hamil-
tonian of the system is given by

N
H=-> mH, (1)
=1

with m; = £m, H as the magnetic field and N the number of magnetic moments.

a) Calculate the internal energy, entropy, magnetization and magnetic susceptibility using
the micro-canonical ensemble. Hint: Use combinatoric relation for binomial systems to
determine the micro-canonical phase space count.

Solution. We define the magnetization M = nmH, withn =ny —n_ and N = ny +n_, such that ny =
NTi". The (discrete) phase space area is then the number of combinations of moments that give the same
magnetization, so Q(n) = % We now use the Stirling’s approximation In(N!) = NIn N —N+O(In N)
and ignore terms of order log N.

log Q(n) = log(N!) — log(n4!) — log(n_")

~ N(logN —1) — N;—n (log(N;_n> —1) — N2—n <log<N2_n> —1),

where we neglected the term  log(7*(N? — n?)). The entropy then reads:

S = kplogQ(n) = 2Nkplog(2) — % ((1 + %) log (1 + %) + (1 — %) log (1 — %)) (S.1)

From the differential dS = (1/7)dU + (M/T)dH we can obtain the temperature, as follows. We insert
E_ {0 get S(E, H) and differentiate keeping n explicitly:
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1_(9s\ _(on) oS _ 1 05
T \OF Hi oF H@ni Hm on
_ Nkp (1 n 1 n 1 1\ kB N+n
—sz(ﬁlog(”N) yos(1-5)+y ﬁ>—sz1°g(N_n)

ko (NHm+E
2Hm B\ NHm—-E

n =

Inverting the above equation yields E = —NHmtanh(8mH), with 8 = 1/(kgT). In order to obtain the
magnetization we first calculate the partial derivative

S\ _(on\ 9S_ B 0S_ Eks | (NHm+E
o), \oH),on " Wmon 20°m S\ NHm-E)’

and then o9
E
The susceptibility reads:
oM Nm?B
=== —. S.3
xu (GH) cosh?(BmH) (8:3)

It is useful to study the magnetization and the susceptibility in the two regimes SmH >, < 1 (see Fig. 1).
When AmH < 1 (small field and/or large temperature limit) tanhz ~ 2 — O(z®) and coshz ~ 1 + O(z?)
such that the magnetization grows linearly in the field, i.e., according to the Curie law of independent
moments

M~ Nm?BH = xH with xg~Nm?8=x. (S.4)
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Figure 1: Magnetization (S.2) as a function of magnetic field strength H scaled to kgT. The dashed
(solid) line is the asymptote at small (large) field (m = 1).

When BmH > 1 (large field and/or small temperature limit) tanhz ~ 1 — ¢~2* and the magnetization
tends to saturate, i.e.,
M ~mN(1 — 2e2PmH), (S.5)

It is also interesting to consider the heat capacity for constant external field H. From dU = (g—g) 4T +

(8%),dH and dM = (%), dT + (%%), dH such that

8Q = dU — 6W = dU — HdM = [(?#)H ~H (%—]\Z{)H]dT+ [(%)T*H (%—A;)T]dH. (S.6)

The heat capacity at fixed H is then given by:

ou oM Nkp(BHm)?
Cu=|—== —H (== =2——F—, S.7
" (8T) . ( T )H cosh?(BmH) 87)
where we used Orf(8) = —kgfB?9sf(8). Note that both the susceptibility and the heat capacity are
exponentially suppressed at low temperature ~ T~ “e~2#™/*BT with o = 1,2, which is indicating a

freezing of the degrees of freedom.

Calculate the internal energy, entropy, magnetization and magnetic susceptibility using
the canonical ensemble.

Solution. In order to determine the thermodynamics of the ideal paramagnet in the canonical ensemble,
we calculate the partition function:

7 = lj[l [;efﬁHm“] =[2 cosh(BmH)]N =z, (S.8)

We can now easily calculate all the thermodynamic functions, e.g, the free energy:
1
F(T,H,N) = 3 InZ =—kgTNnZ, (S.9)

and the internal energy
U(T,H,N)=—-03InZ = —NmH tanh(8mH). (S.10)

From the free energy (S.9) we obtain the magnetization and the susceptibility, which are equal to the micro
canonical case (S.2), (S.3).

Exercise 2. Classical ideal lattice gas

We consider N; particles on a lattice of N sites (N = Nj + N3), which have the condition that
only one particle can occupy a site at a time. We assume that the particles have the energy F 4
on Nj sites and Eg on the other N, sites. Consider the situation that N; < Ny and analyse the
following situations in both the micro-canonical and canonical ensemble.



a) The energies satisfy F4 < Ep.
b) The energies satify E4 > Ep.
c) Vary the energies continuously between case a) and b).

Solution. Microcanonical case We need to calculate the number of microscopic realizations that yields the same
energy

E =NaFEas+ NEp (S.ll)
with N4(p) the number of particles on the sites with energy E ). Note, that Na < Ni, and
N1 = Na + Np. (8.12)

At zero temperature, as N1 < Na we expect that when E4 < Ep, Na = N; with zero entropy, as there is only one
configuration possible (all atoms sitting on the N4 sites). On the other hand, when E4 > Ep, it will be favourable
for the system to occupy the B sites, i.e., Na = 0 and since N2 > N; the number of allowed configurations will
be larger than 1 and the residual entropy non zero. More quantitatively,
Ny! No! Ny! (N — Ny)!
QO =Q4u0p = = S.13
AYE T NT — Na)INal (N2 — Np)INg! — (N1 — Na)INa! (N + Na(N; — Na) (8:13)
where we used N = N1 + N2 and N1 = Na + Np. We immediately see that when N4 = N1, Ng =0and Q =1,
while when N4 =0 2 = Qp > 1. The entropy reads:

S =kpInQ = kp[N1In N142N1—2(N1—Na) In(N1—Na)—NaIn Na+(N—N1) In(N—=N1)— (N4 Na) In(N+Na)].

(S.14)
In order to obtain the temperature, we write
1 _ 9SS _ONa 0S5 _ 1 oS (S.15)
T OE OE ONa Ea—EpONa’ '
such that 1 i
B
— = ———"—12In(N1 — Na) —In(N + N4a) —In N. 1
T EA—EB[H(I 4) —In(N + Na) — In N4] (S.16)
which implies
(N1 = Na)* _ _6Ep-Ea)
- = . S.17
Na(N+Na) € (817)

At zero T, when E4 < Ep the R. H. S. of the equation above is zero and this can only be satisfied when N1 = Ny4.
On the other hand, when E4 > Ep the R. H. S. diverges, implying N4 = 0. Therefore, the distribution Na(FEa)
goes from N; when F4 < Ep to zero when E4 > Ep in a step-like fashion at zero temperature. For larger T,
the step is smeared out over an energy interval ~ kpT.

Canonical case 1t is straightforward to write the partition function in the following way:
Z=01+ e—ﬁ(EA—u))Nl(l + e—ﬂ(EB—#))Nz (S.18)

as each one among the N1 sites can be either occupied or empty. The quantity p fixes the particle number
and results from the shifting of the Hamiltonian H = Hy + Hg — H = Ha + Hp — u(Na + Np) = Ha + Hp.
Therefore, the internal energy reads:

ze PEA ze PEB
Us=-0Z=NBag— 550+ NeBp 5 = NaBa+ No g, (S.19)
with z = exp(Bu). From the last equivalence, we obtain
Na = (N1 — Na)ze PP4 and Np = (N2 — Np)ze 7P (S.20)
such that
NNy = Na) _ ~p(Pn-ra) (S.21)

Na(N2 — Np)
Again, at zero T, when F4 < Ep the R. H. S. of the equation above is zero and this implies N1 = Na, i.e.,
all particles are in the A sites. On the other hand, when EF4 > Ep the R. H. S. diverges, implying N4 = 0 or
N2 = Np. Since N1 < N it can only be Ny = 0. Alternatively, one could obtain the Boltzmann factors (S.20) by
maximizing the phase space count (S.13) with respect to N4 with the energy (S.11) and particle number (S.12)
constraints imposed through Lagrange multipliers. The multiplier § fixing the total energy can be shown to be
equal to the inverse temperature via the thermodynamic relation

1 _dS _ 9S ONa . 9S ONp _
T~ dE — 9N. 0E " ong oE _ FBh (8:22)




Exercise 3. Classical ideal gas in a harmonic trap

We consider independent classical particles in a harmonic trap described by the Hamiltonian,
P; o
— 7 o’
7-[—% {2m+ari}. (2)

a) Assume N particles and discuss the system in the micro-canonical ensemble.

Solution. In the microcanonical ensemble, the connection to thermodynamics is provided through the
phase space volume

®(F) = AN/ dp dq, (S.23)
H(p,q)<E
with
H(p,q) =) {% + aq:?] . (S.24)

=1

We perform the rescaling, P, = p;/v2m and Q; = ¢iv/a, such that the Hamiltonian is simplified

N
H(P,Q) = Z [ﬁiQ + QLQ] (S.25)
=1
as well as the phase space integral
om \ 3V/2
D(E)=An (—) / dPdQ, (S.26)
a H(P,Q)<E

since dp = Hf\;l d®p; and dg = Hivzl d3q;. We then need to calculate, as already explained in the lecture,
the volume of a sphere in 6N dimensional space, i.e.,

o\ 3N/2
®(E) = AN (7) CGNE3N7 (S.27)
with
C i S.28
R 529

In order to obtain the thermodynamics, we can then refer to the lecture, with the substitutions 2m — 2m/a
and E3N/?2 o B3N i.e., the entropy

1 2m wE \3
S(E,N) = NkgIn [N (, / 7317}1) } + 4Nkp. (S.29)
Inverting the above relation we find:
3N**h [a S

US,N) =B == [ =L exp [m - 4/3} (S.30)

such that the equation of state can be obtained as follows,

ou U

T=|=-"2 = =3NkgT 31
(as)N SNk, U= 3NksT (8:31)

which expresses the equipartition law.

b) Assume N particles and discuss the system in the canonical ensemble.



Solution. Within the canonical ensemble, we need again to calculate the partition function. It reads:

N N
H/d:spie—ﬁpf/zm] |:H/d3qie—ﬁaq}2:| _
i=1 i=1

Z:AN/dpdqe_'BH(p’q) = Ax

N N
~Aw |:/ dxdydze_ﬁ(12+y2+22)/2m:| |:/ dedydz e—aﬁ(z2+y2+z2):| _ (S.32)
3N/2
— Ay (Qﬂ) kTN
a
We can then obtain all thermodynamic functions, as in Ex. 1, e.g., the free energy:
1 1 2m kT \3
F(T,N) = ——InZ = —NkpT1 [70/7 )]—Nlc T S.33
(T,N) T sTIn | =\~ B (5.33)
and the caloric equation of state,
U(T,N)=—-0sInZ =3NkpT. (S.34)

Assume a constant chemical potential p and discuss the system in the grand canonical
ensemble. Note the differences. How would you determine/define compressibility?

Solution. In the grand-canonical ensemble, the thermodynamics for fixed chemical potential p and vary-
ing particle number N is given through the grand partition function,

z=>Y Nz, (S.35)
N=0
with the fugacity z = exp(Bu), while Zy is the partition function of the corresponding canonical ensemble

(S.32), i.e., with given N. We then obtain:
— 1 am wksT\|
— 2| Buf,|FMTEB
N

3N

o~ 1 g | [2m7ksT
Z=2 yyan© Ve h

N=0 N=0 (S.36)
2m kT \3
_ Bu <y mhB
exp o7 (I AL
We are then able to calculate all thermodynamic functions, i.e., the grand potential
QT V, 1) = —pV = —% InZ = —eﬂﬂ(,/%”%)‘"’(kﬂ)“. (S.37)
In order to define compressibility, we exploit the Gibbs-Duhem relation
G(T,p,N)=uN — SdT'—Vdp+ Ndu =0, (S.38)
where G is the Gibbs free energy. We can then write:
S ou dp
dy = vdp Nd — <8v)T v<8v>T’ (S.39)
where v = V/N. One then obtains
2
(@) = (@@) _ N (87/‘) (S.40)
ov ) . ov ON /. V \ON ),
while for the R.H.S. of (S.39)
3p) <6V Op ) ( Op )
) (22} N (22 (S.41)
(81} T ov oV ) .. ov ),
such that one can conclude:
N2 [ ou op o Op
—— == ) =V == N(lz=) ==V |=] . S.42
V(aN)T (avT_> oN ), " \av ), (542)



According to the definition of isothermal compressibility,

1 (oV
—_—(Z= S.43
eV ( op )T ’ 5
that quantifies the normalized reduction in volume when changing the pressure at fixed temperature, we
obtain: o
v
=— = . S.44
" N ( o ) T ( )
In the grand-canonical ensemble, we replace N with (N), which can be calculated as follows:
(N)=20.InZ=InZ = -Qg. (S.45)
Therefore,
v [0z O(N) v 0z
- _Yv (9 — — 22 — 8. S.46
TN (au 9z )T cop P (546)
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Exercise 1. The Classical Ideal Paramagnet Reloaded.

Consider a lattice of N noninteracting particles, each possessing a magnetic moment 1i; of fixed
magnitude m which can point in any spacial direction. (This changes from last week’s exercise,
where m; = £m.) The Hamiltonian is, as you might have guessed,

H=-> m-H, (1)
i
where H is the externally applied magnetic field, assumed homogeneous and in the Z direction.

(a) Calculate the canonical partition function Z of the system.

Solution. All magnetic moments are independent, so we can calculate first the partition function Z; of
a single magnetic moment m:

Z1 :/@eﬂm-ﬁ :/@eﬂmHCOSH — l/ desineeBchose
4 2 Jo

4T
1 T -1 6 BmH cos 6 1 |: BmH cos 9i| 4 sinh /BmH
— — - - —_——— = — . .1
2 /0 d0 (5mH) a0 ¢ 28mH | o pmH (8-1)
The total partition function is then simply
sinh SmH N
Z= <7ﬁmH ) . (S.2)

(b) Calculate the free energy F', internal energy U and heat capacity C. Discuss the limiting
cases where k1T < mH and kT > mH. Calculate the entropy S in those cases.

Solution. Free Energy. The free energy is given by

1 . sinh SmH
F = EIHZ_ NkpTIn ey (S.3)
If kT < mH (i.e. fmH — o0), we can approximate sinh SmH = %eﬂ’"H and
eBmH
F~ —NkgT1In 2Bmil = —NmH + NkgTln (26mH) . (S.4)
If kT > mH we have fmH — 0 and in this case
3
pmH + L (BmH)? (BmH)? 1 (mH\>
FNkaBTlnﬁm—HfkaBTln 1+T NkaBTTfkaBTa T .
(S.5)
Internal Energy. It is given by
U= _9 N [Insinh fmH — In fmH] = =N |mH coth fmH — mH | NmH Lt coth BmH
0B a BmH | BmH ’
(S.6)
Heat Capacity. The heat capacity is then
ou 1 oU NmH 1 —-mH (BmH)? )
C="=_ - = _ — — =Nkp(1- —"—5—"2—) . S.7
aT ~  kpI2 0B kpT? [ mHB?  sinh? BmH} B ( sinh? fmH &1



In the case kT <« mH, i.e. BmH — oo, we have sinh fmH ~ %eﬁmH. Then % ~ 2BmHe PMH

0, such that C' — Nkp like for an ideal gas (in violation of the third law of thermodynamics'). In the limit
where kgT > mH, we have SmH — 0, in which case sinh (8mH) /BmH — 1 and C — 0.

Entropy. We have S — Sp = — (BF)H - In the regime kpT < mH,

T
aB\ o -1 2mH
— = —Nkpln(286mH) — NkgT | — | —=In(286mH) = —NkpIn (28mH) — NkgT ——

S —So kpIn (28mH) ks (8T) 8 n (26mH) kpIn (28mH) kg FpT? 2Bmi

:—NkBIH(ZﬁmH)—FNkB . (SS)
In the other regime, kT > mH, we have
2 2
S Gy — Nkp ( mH NkpT 9 mH\ —mH _ _ Nkp (mH (S.9)
3! kT 3! kT ) kpT? 3! kT

(In case you had your doubts, you do indeed get the same expressions for the entropy in these limiting
cases if you started off from (S.3), calculated the entropy in general and then looked at the limiting cases.)

(¢) If M, is the thermodynamic variable corresponding to magnetization, show that

M= (fgfi)T,N ' )

Hint. Remember that in the thermodynamics of magnetic systems, H and M replace respectively
variables p and V' as conjugate variables.

A Note: Which differential to use?

In the beginning of the course “Theory of Heat” we derived the (correct) differential dU = T'dS + HdM,
which corresponds to fixing the (extensive) variable M (the magnetization). This relates well to the
mechanical case with the analogies —p <+ H and V < M.

However, in “reality” it is much more convenient to fix the (intensive) external magnetic field H. This
corresponds to the enthalpy H, which is the Legendre transform of the internal energy

dH = dU — d(HM) = TdS — MdH . (S.10)

That means, what we identify with the energy in the microcanonical treatment (when fixing the magnetic
field) is in fact the enthalpy H (instead of the internal energy U) and the canonical treatment technically
leads to the Gibbs free energy G (instead of the Helmholtz free energy F).

However, we do not want to change all these relations, so we just “redefine” the differential of the internal
energy to
dU =TdS — MdH (S.11)

such that we swap H <> U and G <+ F. Then we can keep the usual relations E = U (microcanonical)
and F = kpT'log(Z) (canonical).

Solution. We know from thermodynamics that the differential of the internal energy is given by
dU =TdS — MdH + pdN . (S.12)

(Here, we will write for short M = M, and H = H..)

The differential —MdH should be chosen instead of HdM because H is the external parameter that can
be varied, while the magnetization M is the system’s response. (This is like considering the enthalpy of a
gas rather than its internal energy, in case we had control over the pressure and not the volume.)

The free energy is the Legendre transform F' = U — T'S and its differential is now

dF = —SdT — MdH + pudN | (S.13)

! The third law of thermodynamics states that the entropy must reach a finite value, conventionally zero, at
zero temperature. This implies that the heat capacity must vanish. This is a well-known problem of the ideal gas
model, for which the entropy diverges at zero temperature and also has a finite heat capacity.



from which we can now trivially read out

(M)T’N — M. (S.14)

The magnetization in statistical mechanics is given by M, = >, m?. Show explicitly that

OF

Calculate the value of (M,). In which regime does the system obey Curie’s law?

<MZ> =

Solution. We have by definition

(M) = %/dQl...dQN M, e PH(mmn A (5.15)
Because of the form of our Hamiltonian, we have aaTHz = —>,mi- = —M; and thus %e_ﬁﬂ = BM.e ¥,
Then
1 ;1 0 —pu(m's,d) _ 11 0 / 1o —BH(m's, H)
(Mz)fZ/dQs ﬁ@Hze = 5790 dQ's e
1 0 oF
== InZ =-— 1
BoH. o, (516
recalling that F' = —(1/8) In Z.
Now (with H = H.)
_ 0 . _ cosh SmH Bm
(M) = NkpT o7 (Insinh fmH — In fmH) = NksT Linh ot O ﬁmH]
1
=N h H——| . 1
m |:C0t Bm ﬁmH] (S.17)

At small fields, or at high temperatures, we have fmH — 0. Because of the series cothz = z~* +5+0 (azs),
we have

1 BmH 1 Nm? H
M.)~ N - = —— S.18
(M)~ Nm | gom + =3 ﬁmH} 3kp T (8.18)
which is Curie’s law with the constant K = ];]1?;2'

Calculate the fluctuations (M2) — (M,)? and relate them to the magnetic susceptibility
Xzz = (OMZ/aHZ)

Solution. In order to calculate the fluctuations, we start off from the definition:

(M.) = %/dﬂ’s M, e~ PR B) _ /dQ’s M, PHE-H(R ) (S.19)
and notice that
0= /dQ’s (M) — M) P(F=#(7"s 1)) (S.20)
Differentiating (S.20) by H.,
0= 8;‘;? +/dQ’s (M=) — M=) 8?[2«9‘*(””(%'5”?)) (S:21)
= S0+ [an's (n) - 30 B (—(00) + b)) (5:22)
= 85]\;? —ﬂ/dﬂls (M) — M.)? P (F=H(m's, H)) (S.23)
_O(M.) 2
= S BL) = ML) (5.24)



Eventually,

(M2)? — (MZ) = ((Mz) — M.)*) = kpT = kT X - (S.25)

Note that the higher the temperature, or the magnetic susceptibility, the higher the fluctuations.

Equation (S.25) is typical of a (dissipation-free) application of the fluctuation-dissipation theorem, which
relates the fluctuation of a thermodynamic quantity to the response function of the system (in this case,
the magnetic susceptibility).

Exercise 2. Rigid Pendulums.

We will now consider a lattice of N classical rigid rotors. Each
rotor is independent, is free to point in any spatial direction and
has a moment of inertia I = mR?. Its Hamiltonian is A

1 2 S
P T}
H=o|po+—5 4 b
o1 \ 7o sin? @ @ ©
.2
T
First a note: how the Hamiltonian (4) is derived. g
©
Let’s start from the Lagrangian of the rotor in cartesian coordinates m . o
L— %m|17\2 . with §= % . (S.26)
In spherical coordinates with |#] = R, we have
di = R (df € +sinfdpé,) , (S.27)
and thus
1 .
L(6,p) = imR2 (92 + sin® 99&2) . (S.28)
The conjugate momenta are then
oL 2, A Yol
pyp = — = mR0 = OszQ ; (S.29)
oL 2 .2, . . Dy
= =mR 0 = = —"— S.30
Pe o mismve v mR2 sin? 6 ( )
Then
; . 1 p§ p2 1 2 p2
H=206 —L== £ = — e . S.31
Pot Py 2 | mR? + mR2 sin? 0 21 | * sin% g ( )

Also, for when we will calculate the partition function later, we need to determine the correct measure to integrate
on the variables 0, o, pg and p,. If you do the calculation explicitely (using in particular Egs. (S.29) and (S.30)),
one can see that the correct integration measure is simply df dy dpg dp.,.

(a) Calculate the (canonical) partition function of the system of N rotors. Calculate the
internal energy and the heat capacity. Study the regimes T' — 0 and T" — oc.

We now immerse the N rotors into a gravitational field with potential V' = mg x; , = —mgR cos 0;.

(b) Determine the partition function and compare it with the partition function of Exercise 1.
Calculate the free energy, internal energy and heat capacity of the system. Discuss the
limits T'— 0 and T — oo.

Solution. The solution to this exercise is attached on page 10.



Exercise 3. Independent Dimers in a Magnetic Field. Quantum vs Ising.

We consider a system of N independent dimers of two spins,
s =1/2, described by the Hamiltonian

Hguantn = JZ <§z1 : §z2) ; (5)

where i is the dimer index and 5;-71 (resp. ,5_’;2) are the spin
operators of the first (resp. second) particle of the dimer. Both particles have spin 1/2. For
simplicity, we use i = 1. To this quantum system corresponds a classical Ising dimer, described

by:
0 2 :Z : ) ) 2 ?

where o; ,, = £1. The spins are aligned along the z axis. We will use eigenstates and eigenen-
ergies to denote also the classical states and energies.
(a) What are the eigenstates and the eigenenergies of a single dimer for the two cases?

(b) For both cases consider the macroscopic system and determine the Helmholtz free energy,
the entropy, the internal energy and the specific heat as a function of temperature and
N. Discuss the limit T — 0 and T" — oo for both signs of J (antiferromagnetic and
ferromagnetic case).

Note: The following exercises are left for the fun of the interested reader.

(c*) We now apply a magnetic field along z direction leading to an additional term in the

Hamiltonian,
M = —gupH Y _ 5%, (7a)
i,m
Ising __ Ti,m
Hniagg = —Q#BHZ 9 (7b)
,m

How do the eigenenergies change? Sketch the energies with respect to the applied field H,
the partition functions and determine the ground state for both cases. For the antiferro-
magnetic case you should notice a critical field. What differences do you notice between
the classical and quantum system when the the critical field is reached? For the quantum
case discuss in this context the entropy per dimer in the limit T — 0.

(d*) Calculate the magnetization m for the two cases. In which limit are they the same?
Moreover compute the magnetic susceptibility y for the quantum case and discuss its
dependence on H for different temperatures.

Solution.

(a) For the Quantum case we may write the Hamiltonian in terms of the total dimer spin S; = _’i,l + gi,z as

ngantum:gZ(gl‘z_g‘il_g’iQ) :%Z<S—?—g> (832)

Clearly, the eigenstates of a single dimer are the spin singlets and triplets:



e The singlet ¥° = %(H@ — |41)) has total spin 0 and, thus, eigenvalue E* = —32.J.

e The triplet states are U§ = \%(| )+ 141, U4 = | 11) and ¥*; = |])). They have total spin 1,
5’22 = 2 and eigenvalue E' = %J.

The Ising case has also four states:

e The doublet states ®in"" = |1]), @40, = |11) have total spin 0 and the eigenvalue E* = —3.J.

e The doublet state ®; = |11), ®_1 = ||}) have total spin magnitude 1 and the eigenvalue E* = %J.
The two systems have the same eigenvalues but with different degeneracies.
The partition function for the two cases is
J 37 \N
ZQUantum — (367 AkpgT + 64kBT) (8'333)
. J 37 \N
lemg — (26_ AkpT + 2e4kBT) , (Sg3b)
so we could write them as
g 3J N
Z = (ae kBT 4 be‘““BT) , (S.34)
where a = 3,b = 1 for the quantum case and a = b = 2 for the Ising one.
The connection to thermodynamics is made via the Helmholtz free energy:
JN N J
FLN)=—imz=IN_N 1n(a+be’3), $.35
(TN) = 3 T F (5.35)
where 8 = . The entropy is given by
OF oF 0B 2 OF
TN =37 =35 ar ~"" 33
N bJe?’
_ 2 (2 BT\ _ %
=kgpB (len(a—kbe ) ﬁa+beBJ>
bJel’
_ BIY _ 7
= Nkg1In (a + be””) Nksf =57 (S.36)
The internal energy is given by
1 e’
T,N 7—1 Z=JN —_— .
U == gz =N (- ) (5:37)
and, finally, the specific heat evaluates to
10U _ kpp?oU _ ,  BZef!
T,N abkp ) ——. S.38
TN =Rer =N o5 - (a+ beh)? (S.38)

Note here that the specific heat vanishes in the limit of low and high temperatures independent of the sign
of J. For the quantum case the internal energy vanishes for large temperatures (independent of the sign
of J) and reaches N times the ground state energy for 7' — 0 (for J > 0 singlets are preferred and we
get U — —fJN whereas for J < 0 we get the triplets and U — JN2 7). On the other hand for the Ising
case U — ,,J N for large temperature 1ndependent of the sign of J, whlle for T'— 0 we get the minimum
energy state (U — —3JN for J >0and U — JN I for J < 0).

The z-component of the magnetic moment vanishes for ¥* and W} and therefore their energy does not
change. However, the U’ ; do have a nonvanishing z-component of +gup, which leads to a new energy
EYy = 31J FgupH (Figure 1).

For the classical system the total magnetic moment for ®*"* is zero so the corresponding energy is un-
changed when the magnetic field is applied, while for ® we have the same energy dependence like for the
quantum case. Therefore only the energy for states with parallel spins is split, the other one remaining
degenerate.
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Figure 1: The energy for the four states of the quantum dimer as a function of the magnetic field for J > 0 (the
antiferromagnetic case).

To calculate the entropy per dimer for the quantum case (it is known as the von Neumann entropy?) we
start with the thermal state (in the basis of its eigenstates) and the partition function (per dimer) is:

e’ 0 0 0
1 0 1 0 0
P=Z| o o ePmH g and (5.39)
0 0 0 eﬁgﬂbH
Zaentm _ r(7p) = ¢/ 41+ 2cosh(Bgup H), (.40)
where we have introduced an energy offset of % (the triplet and singlet energies become Elgyo; = —J, Elfoer =

0). Note that p is independent of the offset since we normalize it to trp = 1. The von Neumann entropy
per dimer is given by

STH) _ i (plogp)
kB

07

—1os7 - 357

2BgupH sinh(BgupH) + BJe’’
ePl + 1+ 2cosh(BgupH)

The expression corresponds to the result we got in b) in the limit H — 0.

=log (¢”” + 1+ 2cosh(BgupH)) — (S.41)

Let us first consider the case J > 0. Here, the singlet state is preferable at low fields |H| < H. and we get
s(T;H) — 0for T — 0. At |H| = H. we have a two-fold degneracy in the ground state (s(T; H) — kg log 2
for T'— 0) and with H > H. the ground state is unique again (s(7'; H) — 0 for 7' — 0). This is illustrated
in Figure 1 and Figure 2.

If J < 0 the triplet state is energetically favorable. If |H| = 0 then the ground state is three-fold degenerate
(s(T;H) — kplog3 for T'— 0). Finite fields break this symmetry and we get (s(7; H) — 0 for T — 0) if
|H| > 0.

For the Ising case the partition function is given by:

Zisine _ o~ (2&” + 2cosh(,3g,uBH)) . (S.42)

For J > 0 in the limit 7" — 0 the doublet state is the minimum one as long |H| < H. and for |H| = H. it
has three-fold degeneracy while for |H| > H. a unique state is obtained.

2 This is equivalent to calculating the Helmholz free energy per dimer and taking the derivative with regards
to temperature as is done in (a). To see this, note that

s(T,H) = —275 = —kB,BQ%%logZ: kBIOgZ—kBB%IogZ: kplogZ — %%tre_m{
=kplogZ + %%trpZ: kplog Z — %%tr(leong) =kgplogZ — kg tr (p[logp + log Z])

=kplogZ — kptr(plogp) — kptr(p)log Z = —kptr(plogp) ,

where we used that pZ is of the form pZ = ¢~ #* (and thus %(pZ) = %pZ log(pZ)), and that trp = 1. Don’t
forget also that Z is a scalar, not an operator.
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Figure 2: Entropy per dimer (J > 0) as a function of temperature for zero field (solid line), critical field (dashed
line) and for higher field (dotted line). The inset shows the entropy at low temperature as a function of the field,
peaked around the critical field.

(d)

The description for J < 0 is the same as for the quantum system.
For the quantum system using the free energy per dimer,
1

AT, H) = 3

log Z = —% log (eﬂ" +1+ QCosh(ﬁguBH)> (S.43)

we find for the magnetization

uantum 6f(Ta H) 29#3 Slnh(ﬁgﬂBH)
quant — —
mn (T H) = ( OH r €7 +1+2cosh(BgupH) (S-44)

For the Ising system
" 2 sinh(BgupH)
Ising T H) = 9JHUB S.45
m =T H) 2ef7 + 2 cosh(BgupH)’ (5.45)
so for €7 ~ 1 it is the same with the one for the quantum case. This correspond to the high temperature
limit 8 — 0.

The susceptibility for the quantum case is given by:

om(T, H)
0H

2 224 (14 €?7)cosh(BgupH)

T,H) = =2 |
X(T, H) Prg (1+ 7 + 2 cosh(BgunH))*

(S.46)

Let J > 0. If we plot the result for different temperatures (Figure 3), we see that for very small tempera-
tures, the magnetization has a sudden increase at H., which follows directly from the fact that at this field
strength, the ground-state of the system becomes magnetized. For higher temperatures, kg1 ~ J, the
system behaves as if it was a simple paramagnet, i.e. we have a linear dependence on the magnetic field.
In this regime, the relevant energy scale is given by the temperature and thus the system is not ordered
anymore but fluctuations dominate.
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Figure 3: Magnetization as a function of applied field for small temperature (solid line), intermediate temperature
(dashed line) and T ~ J. The inset shows the susceptibility for the corresponding temperatures. For T — 0, the
susceptibility diverges at H = H,.
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Exercise 1. Quantum rotor in a magnetic field

Consider a lattice of N quantum rotors. Each rotor is independent and has a momentum of
inertia I = mR2. It is described by the following Hamiltonian:
L? L2

T omRZ 20 ()

(a) Calculate the (canonical) partition function of the system of N rotors. Determine the
entropy, the internal energy, the projection of the angular moment along the z direction
and the heat capacity. Compute them numerically and study the high and low temperature
limits. It is useful to define 0,0t by kpbiot = 1/1.

Hint. If £ (c0) — 0,Yn € N then the Euler-Maclaurin formula could be simplified to:

= o 1 2 (=D)kbg
S = [ a5 -3 S0+ R @
0 2 (k)!
1=0 k=2
where Ry, is a small correction and by, are the Bernoulli numbers bs = 1/6,b3 = 0,by = —1/30,--- .

http: //people. csail. mit. edu/kuat/ courses/ euler-maclaurin. pdf

Solution. Ts it useful to work in the eigenbasis |I,m) defined by L2|I,m) = I(I + 1)|I,m), L.|l,m) = m|l,m)

where [ = 0---00 and m = —[---1. The partition function is Z = Z¥ where
%) l %) %)
7= e PEN/CD ST (o) 4 1) BN/ §7 (g 4 1)t /1) (S.1)
1=0 m=—1 1=0 1=0

The high (low) temperature limits correspond to 9% —0 (B‘T‘“ — 0). For low temperature limit we keep only
first two terms in the sum. For the high temperature limit we use Euler-Maclaurin formula up to k& = 4 and
collect the dominant terms.

/oo di(2l + 1)e—l(l+1)9rot/(2T) _ _E /00 dlie_l(l"rl)erot/(QT) — 2r (S.2)
0 Omt 0 dl erot

In the two limits the results become:

(B a0 .
1= '
1+ 3e ot/Tjf fror 5 o0
The internal energy is:
2 Oro 6r -1 :r Oro
OnZ omz VR (G- %) (S s d) i o S
U=- =kpT = y
op """ or o RN (S.4)
BNkpOrore” /T (14 3¢ 00/ T) if frot — o0
Nkp (T — Bror _ 1”53,}) if et — 0
~ (S.5)
3Nk30r0t379r0t/T if % — 00
The entropy is:
_ OF 0kgTlZz _ omZi\ U
S—So——ﬁ— 9T = Nkg (an1—|—T T )—Nk31n21+T (8.6)


http://people.csail.mit.edu/kuat/courses/euler-maclaurin.pdf

Oro 950 i Oro
Nkp (1 (9mt+ +3OIE)+1 _180Tt2) if Zpt =0
~ . (5.7
Nk (1n (14 8e~%t/T) 4 3%~ 0rn/T) if ot o0

It is clear that S(T'=0) = 0.
By symmetry, the projection of the angular momentum is O .

The specific heat is:

ou | Vs (15 (%2)7) it % 0

v =2~ (S.8)

3Nkp (Zet)? e for/T if ot 5 o0

[—— fully numerical = = = « T~0 — = T~ |

0 T T T T 1
0 0.2 0.4 0.6 0.8 1

T

Figure 1: The two analytic approximations and the fully numerical solution for the specific heat as a function of
temperature (6ot = 1).

Now add a magnetic field that couples to the angular momentum as:

H =-vB L. (3)

(b) What is the effect of the magnetic field? Determine the entropy, the internal energy, the
projection of the angular moment along the z direction and the heat capacity. Compute
them numerically and study the high and low temperature limits. It is useful to define
Omag by kBOmag = 7B..

Solution.
H =-B-L=—vB.L. . (S.9)

The magnetic field splits the 2] + 1 symmetry of H.

oo l 0o l 0o
_ —B{U+1)/ (2D~ Bam} _ —BI+1)/(21) ByB.m sinh( ﬂvB 2l+1)/2) B/ D)
a5 S £ onn) SR

m=—1

(S.10)



where we used for the sum over m the result from the Lecture Notes 2.4.2 .

71 = ; Zsmh ( (20 + )emag) o LI+ 1D)0rot/(2T) (S.11)
smh( '“ag)

. . . . . €T .
Using limy_,o sinhz =~ x and lim,_,~ sinhx ~ 52 and assuming Orot > Omag We have:

2T

010 e 1 2T Oror  if 1
0r0¢+77307t“ if 7+ =0 0r0t+77301t“ if 7+ =0
Z1 = = , (S.12)
Omag/T ,—0Orot /T ¢ 1 —Oett/T e 1
14 e"mas/te t if £ — o0 1+ e Pett if £ — o0

where et = Orot — Omag. In this approximation, for high temperature we recover the result from (a). In low
temperature limit the effect of the magnetic field enters explicitly, 0.0t being replaced by f.g and the prefactor 3
is replaced by 1.

The internal energy is:

6 180T
U~ . (S.13)
NkpOege o1t/ if L — o0

Nkg (T — G _ O ) if L0

The entropy is:

0T | 1 6s 02, 1
Nkg (ln(m+§+30%) 180’122) if 7 —=0
S-S~ . (S.14)
Nkg (ln (1 + e_QCff/T) GPT“'e_ecff/T) if - — 00
The projection of the angular momentum is simply:
e 1
oF _Nowmz _ J° ifr—0

(L.) = — (S.15)

0(yB.) B d(yB-) Ne~0t/T i 1 o0

The specific heat is:

Nk (14 k5 (%4)") if 5 =0
CV ~ 2 . (816)
Nkp (Q%ff) g Yert/T if % — 00
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Figure 2: The two analytic approximations and the fully numerical solution for the specific heat as a function of

temperature for different values of Omag = 0.1,0.3 and

Exercise 2.

05 (91«0‘; == 1)

Ideal fermionic quantum gas in a harmonic trap

In this exercise we study the fermionic spinless ideal gas confined in a three-dimensional harmonic
potential and compare it with classical case (for the results of the classical case see Exercise Sheet

1). The energy states of the gas are given by

Eq = hw(ag + ay + a)

(4)

where we neglect the zero point energy Ey = 3 fuw/2. The occupation number of the oscillator
modes of the state Ej is given by na where a = (ag,ay,a.) with a; € {0,1,2,...} .

(a) Consider the high-temperature, low-density limit (z < 1). Derive the grand canonical



partition function Z; of this system and compute the grand potential ¢. Show that
Qf o falz) (5)
where the function fs(z) is defined as
fi(2)==> (=15 - (6)
=1

Solution. We begin with the general definition of the grand canonical partition function within the
occupation number formalism (section 2.5 of the lecture notes) and find

Zp = 1:[; (zeiBEa)na = H(l + ze P2y (S.17)

a

In order to compute the grand potential 2 = —1/81n Z, we use the series expansion
ln(1+$):—i(i‘r)é for —1<z<1 (S.18)
2 7 <1. .

This expansion is applicable for the logarithm of the partition function in (S.17) if ze = < 1 (it is always
positive). This certainly holds in the high-temperature limit z < 1 .

Let us first consider the fermionic grand potential Q2 ,

<) ) ) 3
InZs = Zln(l + ze_ﬂEa) = —ZZ(—l)Z%e_mEa = — ZZ(—I)EZ; <Z e_wﬁwa>
a =1

a (=1 a=0

oo Ze M
- 22:1(_1)[7 (gg;w>3 ifg—0

- (=D if f— oo

e () -

=1

. (S.19)
fi(z) if 8— o0

We obtained both the high and the low temperature limits. Otherwise, in the high temperature limit, we
can approximate the sum over the oscillator modes by an integration with constant and normalized density
of states, Y507 _) — I3 dag, for k= z,y, 2.

e oo oo s £
InZ;~— da, day dazz (-1)* % e~ tPhw(aztaytaz)
0 0 =1
R 211
=GP ; (%] = Gy 116 (S-20)

The fermionic grand potential is
1 1

Q= =5 Gy 1) (S.21)

Derive the internal energy U and the average particle number (N). In order to get U in
terms of N (instead of dealing with the chemical potential), introduce the parameter

hwN'1/3

= (= 7
p T , (7)

and relate it to z using the high-temperature, low-density expansion of (N). Interpret the
condition p < 1.

Then, expand U up to second order in p, relating it to IV .



Solution. First, we compute the internal energy of the system,

Uy = LB@;M) , (S.22)

where the derivative has to be taken at constant fugacity z = ¢®#. Starting from (S.21) we find
Uy = %ﬁ fa(2), (S.23)
which shows that the internal energy is proportional to the grand potential, Uy = —3 Q5.
The average particle number can be computed in a similar way,
(Ny) = zg In Zy. (S.24)
0z
We have

(V1) = 23 o (2) = g () (5.25)

where we used
2 fa(2) = fol2). (S.26)

In order to relate the internal energy to the particle number, we start with the high-temperature expansion
of the particle number equation,

1 1 2?
N¢) = ——— N - — . 2
1) = g ) = G (-~ ) (527
The parameter p is given by (we are dropping the indices for readability)
hwNY/3\?
=—- . 2
p= (M0 (5.28)

The condition z < 1 also implies p < 1. Expanding in p allows us to deal with the particle number instead
of the chemical potential. Solving p = z — 2%/8, we obtain z = 4 4+ 2,/4— 2p . Choosing the relevant

solution and expanding /(1 +z) ~ 1 + S - % we find

2

z:p—i—%. (S.29)

To interpret the condition p < 1 we first note that for a system, in which every state up to a given maximal
ENergy €max = MuGmax is singly occupied, the number of occupied states is proportional with a2 ,.. The
characteristic energy scale of such a system is thus given by hwN'/3 (for fermions ~ ep). Therefore, this
condition requires that the characteristic energy scale of such a singly occupied system is much smaller
than the thermal energy kT (high-temperature limit). This means that we consider temperatures at which
the average occupation of the states is much smaller than one (low-density limit).

We write the internal energy up to second order in p as

3 ) 51\ hw \° 1

where we recover the equipartition law in leading order and the positive first order quantum corrections
o« N(hw/kpT)? < 1 distinguishing the fermions from the ideal classical gas.

(c) Compute the specific heat C. Which quantity has to be fixed in order to do this?



Solution. Since our system does not really have a volume as thermodynamic variable we have to compute
the specific heat C'y by fixing the number of particles. Hence, as a starting point we use the expression
(S.30) for the inner energy, where we can keep N fixed:

On = (%)N — 3Nkg (1 _ éN (]j:’}]“)s> . (S.31)

Compute the isothermal compressibility 7 .

Solution. Be definition

v (ON
RT = N <67,U1>T s (832)

where v = % Therefore we have for our system

KT:L<8zaN) _ g L ORG) _ ah() N <1_1N(m)3>‘ (5.33)

Ny \op 0z ), ~ N7*(Bhw)® 02 fa(z) - VkpT 8" \kpT

Interpret your results for U, C, and k7 by comparing them with the corresponding results
for the classical Boltzmann gas. How do the quantum corrections influence the fermionic
system?

Solution. In summary we have found up to first order in p:

hw \° 1
On = 3Nk (1- 2n (1) (S.35)
N 8" \knT ’ '
N 1 hw \°

These results as a function of temperature are plotted in Fig. 3; each for the classical and the fermionic
case. Note that our expansions up to first order in p are only valid for p < 1. We can still plot these
expansions for larger values of p (that is, lower temperatures) to observe the trends, keeping in mind that
these results are not exactly valid.

We see that

e In zeroth order in p the results for the classical (Boltzmann) gas in a harmonic trap are recovered.

e Due to quantum corrections, the internal energy U for fermions is higher than the ideal classical gas.
This can be understood by taking quantum statistics into account. Fermions are not allowed to oc-
cupy the same state (Pauli). Lowering the temperature, the system tends to occupy low energy states
with growing probability. While the classical system is not influenced at all by double occupancy, in
the fermionic system the double occupancy is forbidden and occupation of low-energy states is thus
reduced, increasing the inner energy Uy compared to the classical gas.
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Figure 3: Thermodynamics of fermionic gase compared to the classical gas.

Note that these quantities are

computed within the high-temperature, low-density approximation and are therefore not exact results. Still, they
can be used to observe trends. The dashed (blue) line is for the fermions and the continuous (black) line for the

classical gas. We set N (fw)® = 100.
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Exercise 1. Ideal phonons in a harmonic trap.

In this exercise we consider an ideal gas of phonons as an example of bosonic particles confined
in a three-dimensional harmonic potential. Observe the differences to the cases of classical and
fermionic particles in the same harmonic potential, which we discussed in Sheet 1, Exercise 3,
and for Sheet 3, Exercise 2, respectively.

The energy states of the phonons are given by
Ea:hw(3/2+a/x+ay+a/z)a (1)

including the zero point energy of Ey = 3 hiw/2. The occupation number of the oscillator modes
of the state Eq is given by a = (ag, ay,a,) with a; € {0,1,2, ...}

(a) Consider the high-temperature, low-density limit (z < 1). Derive the grand canonical
partition function for the phonons, Z;, and compute the grand potential €2,. Take into
account also the zero-point energy of the harmonic oscillators. Show that

Qp X g (ze_’BE(’) , (2)

where the function gs(z) is defined as

l

9(2) =3 = (3)
=1

(b) Derive the internal energy U and the average particle number (V). Follow the same
approach as in Sheet 3, Exercise 2 in order to obtain U in terms of V.
(c) Compute the specific heat Cy for constant particle number.

Compute the thermal expansion coefficient . Use the average square displacement of
the harmonic oscillator rfﬂ = x% (a; + ay + a;) in order to define an effective volume
Vegg = 4m/3 rgﬁ. Give an interpretation of Vg.

(d) Plot your results for U, C, and « for the classical, the fermionic, and the bosonic case and
note the differences.

(e) Find the critical temperature T, at which Bose-Einstein condensation occurs. How can
this be reconciled with the high-temperature, low-density limit?

Hint. The chemical potential can not be larger than the lowest energy level of the particles.

Solution.

(a) We begin with the general definition of the grand canonical partition function within the occupation number
formalism (section 2.5 of the lecture notes) and find

2y = H i (zefﬁE“)na = H(l — ze FFay~1 (S.1)

a ng=0 a



(b)

In order to compute the grand potential 2 = —1/81log Z, we use the series expansion

oo

log(l1+4z) =

for —1<x<1. (S.2)

This expansion is applicable for the logarithm of the partition function in (S.1) as 0 < ze #Pe < 1 (as
1 S Emin)-
With this replacement we can exactly calculate log(Zy) in the high-temperature limit (8 — 0):

oo oo oo 3
log Zy, = — Zlog(l — ze PPay = ZZ % e e — Z 7 (Z e A/ ewﬁ““>

a (=1 =1 a=0

, BE (53)
Zi e tBhw/2 ﬁ_wz ze 0) 1 _ 1 " (ze*ﬂEo)
— ¢ \1- e~ tBhw pt L (£Bhw)3  (Bhw)?
The grand potential is then given by
— 71 1 —BEy
Qp = 3 (6hw)3g4 (ze ) . (S.4)
First, we compute the internal energy of the system,
(B )
U, = ———= S.5
L= 253 (5.5)
where the derivative has to be taken at constant fugacity z = e®#. Starting from (S.4) we find
o § 1 —BEg Eo —BEo
Uy, = 3 By ga (ze ) + Bha)? g3 (ze ) , (S.6)

which shows that the internal energy is proportional to the grand potential plus a term representing the
zero-point energy of the harmonic oscillators.

The average particle number can be computed in a similar way,

(Np) = z% log Zy, . (S.7)
‘We have
_ 0 1 —pE\ _ _ 1 —BE,
<Nb> = Z& W‘% (ze ) = ng (ze ) s (88)
where we used
22 ga(2) = 4s(2). (3.9)

We immediately see, that the second term in equation (S.6) is just given by (Ny,)Fjo.
In order to simplify the following calculation, we define a renormalized fugacity

z = ze PFO (S.10)

Now we want to relate the internal energy to the particle number and start with the high-temperature
expansion of the particle number equation,

1 . 1 _ 2
(No) = 7(5%)393(’2) ~ o)y (z+ §) . (S.11)
The parameter p is given by
hwN1/3\°
p= (kBiT> . (S.12)

The condition z < 1 also implies p < 1. Expanding in p allows us to deal with the particle number instead
of the chemical potential. Inverting the series p = z + 2?/8, we find

2
Ezpf%. (S.13)



To interpret the condition p <« 1 we first note that for a system, in which every state up to a given
maximal energy €max = Awamax is singly occupied, the number of occupied states corresponds to af’nax/G,
The characteristic energy scale of such a system is thus given by wN'/3. Therefore, this condition requires
that the characteristic energy scale of such a singly occupied system is much smaller than the thermal energy
ksT (high-temperature limit). This means that we consider temperatures at which the average occupation
of the states is much smaller than one (low-density limit).

We write the internal energy up to second order in p as

3 1 .3 1 .32
U= NEs = § ) = § e (54 35)
3 1 p?
= B (Bhw)? (”‘E>
3 2 s 1Y) hw \* 1

where we recover the equipartition law in leading order and the (negative) first order quantum corrections
o N(hw/ksT)?® < 1 distinguishing the bosons from the ideal classical gas.

(c¢) Since our system does not really have a volume as thermodynamic variable we have to compute the specific
heat Cn by fixing the number of particles. Hence, as a starting point we use the expression (S.14) for the
internal energy, where we can keep N fixed:

ou 1w \?

Finally, we compute the thermal expansion coefficient o = V™! (9V/9T) at fixed N. For this we have to
define an effective volume of the system by introducing an effective radius r2¢ = (r?) . From basic quantum
mechanics we know that rZg = z2 (az + ay + a.), where xo represents the characteristic length scale which
we fix to unity. Hence, we can relate r2; to the internal energy of the system via

hwr2gN =U . (S.16)
Therefore, we find
Am o5 4w (U N\
Vet = g T = 7 (wa) ' (517

For the thermal expansion coefficient we obtain

3/2
Ot:UiE‘)/2 <8U ) :§U710N
N

oT 2
3 1 hw \?
=2 keN (14N (22
2U 3k <+8 <k‘BT)>
31 1+2 31 3
=2_ =2 (1+= 1
2T 1— £ 2T<+16p)’ (8.18)

which agrees (in leading order) with the result for a classical gas in the harmonic trap (o = 3/(27)).

(d) In summary, in Sheet 3, Exercise 2 and in this exercise we have found up to first order in p:

w \° 1
U = 3NkgT (lﬁ:N(kBT) 16) 7 (S.19)
Ox = 3Nks (15 15 (12) (S.20)
A AR e ’ '
31 3 Aw \

where the upper and lower sign corresponds to fermions and bosons, respectively. For the classical case,
the corrections to 1 vanish for all three formulas.

These results as a function of temperature are plotted in Fig. 1; each for the classical, the fermionic, and
the bosonic case. Note that our expansions up to first order in p are only valid for p < 1. We can still
plot these expansions for larger values of p (that is, lower temperatures) to observe the trends, keeping in
mind that these results are not exactly valid.

We see that
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Figure 1: Thermodynamics of fermionic and bosonic gases compared to the classical gas. Note that these quantities
are computed within the high-temperature, low-density approximation and are therefore not exact results. Still,
they can be used to observe trends. The dashed (blue) line is for the fermions, the dotted (red) line for the bosons,
and the continuous (black) line for the classical gas. We set Nfw = 100.

e In zeroth order in p the results for the classical (Boltzmann) gas in a harmonic trap are recovered.

e Due to quantum corrections the internal energy U for fermions (bosons) is higher (lower) than the

ideal classical gas.
This can be understood by taking quantum statistics into account. Fermions are not allowed to
occupy the same state (Pauli) while bosons tend to gather in the same quantum state. Lowering
the temperature, the system tends to occupy low energy states with growing probability. While the
classical system is not influenced at all by double occupancy, in the fermionic system the double
occupancy is forbidden and occupation of low-energy states is thus reduced, increasing the internal
energy Uy, compared to the classical gas. In the bosonic case, the opposite happens: the probability
of occupying low energy states is enhanced, reducing the internal energy Uy,.

e The thermal expansion coefficient is lowered (enhanced) for fermions (bosons) compared to classical
gas. This feature represents the fact that with decreasing temperature the bosons tend to occupy
more low energy states than the fermions, thus reducing the effective volume Veg more strongly with
temperature which enhances the thermal expansion coefficient.

(e) We now analyse the number equation (S.8) for the bosonic system in detail. If we decrease the temperature,
in order to keep the particle number constant, the function gs(z) has to increase. For a bosonic system, the
chemical potential must always be smaller than the state with lowest energy. In this case, this corresponds
to

z < ¥/ (S.22)

The maximum of the monotonically increasing function gz(%) (see Fig. 2) is taken when z = ¢3#h«/2,

Hence, the number equation cannot hold for arbitrary small temperature. There exists a critical tempera-
ture T at which the chemical potential is equal to the ground-state energy, u = Eo, and thus ze PBoO — 1,
This temperature can easily be computed as

thl/S

()77 (5.23)

T.
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Figure 2: Plot of the function g3(z) for values of z between 0 and 1.

The physical interpretation of this critical point is simple: For the derivation of the number equation,
the zero energy state has been neglected. For temperatures above 7. this is a negligible error, but for
temperatures below 7 it becomes energetically favorable to occupy this single state with a macroscopically
large particle number. Hence, the approximation to neglect the occupation of the zero energy state becomes
bad for temperatures below T.. Macroscopically large occupation of a single quantum state, or equivalently
a density matrix where a single eigenvalue is by far the dominant one, is a definition of a condensate. Hence,
T. represents the critical temperature for the bosonic gas to form a Bose-Einstein condensate.

With equation (S.23) we show that our high temperature approximation holds even until Tt if the number
of particles N is large: when we compress enough particles, they will condense at a high temperature and
we can use the instability of this approximation to find our Tc. Of course, at T¢ itself the approximation
breaks down.

Exercise 2. Behavior of excitations in a semiconductor.

In this exercise we analyze the properties and behavior of electron-excitations of a semiconductor
at finite temperature. In solid state theory, electronic states |k,a) are usually labeled by a
pseudomomentum k = (ks, ky, k,) and a band-index o € {1,2,...}. For a crystal with lattice
constant a, the pseudomomentum takes values in the so-called Brillouin zone {—m/a,n/a}?.
Assuming a cubic crystal with side-length L there exist (L/a)? equally distributed k-vectors in
this Brillouin zone. Each of the states is doubly degenerate due to the spin, such that there are
in total 2(L/a)? states for each band.

In order to simplify the treatment, we only
take into account two bands whose energies E

are approximated as parabolic, conduction band

27,2 27,2

) =5 =Bt (4
as shown in the figure. Here the indices v and
¢ stand for valence and conduction band, re-
spectively. The parameters m, and m. which
define the curvature of the two bands are k
called effective masses and can in general be
different from one another and from the elec-
tron mass. The bandgap, Eg, is the energy
difference between the bottom of the conduc-
tion band and the top of the valence band.

valence band




Assume for this exercise that the bandgap is much larger than the thermal energy and the
chemical potential lies within the gap, 8E; > Bu > 1.

(a) Assume at first that the particle number is not fixed and calculate the grand potential
of this system.

Hint. For large L, a sum over k can be approximated by an integral:
T/a L3
= &3k — )
% /ﬂ'/a 83 ( )

(b) In a realistic system, the particle number is fixed, as every atom in the solid contributes
a specific number of electrons. We assume here a particle number, such that the lower
band is completely filled at zero temperature, i. e. N = 2(L/a)3. Calculate the chemical
potential p(7T) at finite temperature.

(c) Starting from your result for 2, calculate the internal energy U(T, N) — U (T = 0, N) (for
N =2(L/a)3), using a Legendre transform.

Hint. The final result is given by

kT
2mh3

_ — — G —BEg/2 3/4
U(T,N)-U(T =0,N) =N e /2 (myme)* (BkpT + Ey) . (6)

(d) A picture that is frequently used in solid state theory is that of electrons and holes: When
an electron is excited to the conduction band, it leaves an empty state in the valence
band. This empty state now behaves like a particle itself and is called a hole. Therefore
an excitation can be regarded as a creation of two particles, similar to the creation of
particle-antiparticle pairs in particle physics.

Use this scheme to interpret the calculated internal energy in terms of the equipartition
law for an ideal gas. How many electrons are in the conduction band?

Solution.

(a) In the grandcanonical ensemble, each of the states can be either occupied or empty, such that we can write
the partition function in the occupation number formalism:

Z(B,z) = [H H 21: (ze755“<k>)nk'a ]2

k a=v,c ng ,=0 (824)

= H [(1 + zeﬁhzkz/?'m") (1 + ,Z(a_B(Eg'4"‘12kz/ch))]2
k

Here the exponent 2 is present due to the spin degeneracy. The grand potential is now given by

Q(B,2) = —1/8 log(2(5,2)) =2 [log (1+ 26”5 /2™ 4 1og (14 ze P22 | (3.5
k

Due to the assumption SEs > Bu > 1 we know that
2R 5 and e PBsTRTRR/2me) g (S.26)

for all k, leading to the approximations
272

log (1 + zem2k2/2mv> ~f (u + I;: ) + z’le*6h2k2/2mv

log (1 + zefﬁ(Eﬁth(zmm“)) ~ zefﬁ(Eﬁth?/ZmC) .

(8.27)



At this point we can replace the sum over k in (S.25) by an integral over k. This leads to

1 T/a

_B —7/a
L/a)3h2n2 L/a)? (knT)?/2
PR L 0

my V2m3/2h3
where we have replaced the integration interval [—m/a,w/a]® by R? for the Gaussian integrals (last two
terms in the integral).

0=

L3 21.2
d:akH {BM-&- 52};7? 4 oAk 2my +267B(Eg+h2k2/2mc):|
N (S.28)

m3/2e—6u+m§/2eﬁ(u—Eg)) 7

v

In the grandcanonical ensemble the average particle number is given by
onN
N)y=——. S.29
) = -5 (5.29)
Here we assumed that (N) = 2(L/a)®. This leads to the equation
3 _ 3 (L/a)s(kBT)5/2 3/2 —Bu 3/2 B(p—Eg)
This is equivalent to
mo\ 32
<4> = P Ee) (S.31)
me
leading to the result
E, 3 my
=—+ —kpT1 . .32
p= e+ ShaTlog (1) (5:32)
The internal energy is given by
U=Q+TS+ uN . (S.33)

We already calculated p as a function of 7' and N. The entropy is given by the partial derivative

S = o0 — (L/a’)g(kBT)S/z l: 5 (m3/2@_5ﬂ —+ mf/Qeﬁ(u—Eg)) — 1 (—Mmi/ze_ﬁu + (M - Eg)mg/Qeﬁ(M_Eg))

0T~ \2r3/2h3 2T\ kpT?
(S.34)
where we used 6% = —ﬁ%. Using equation (S.32), we find
(mi/Qe_B" + mg/zeﬁ(”_Eg)) =2e P2 (myme)** (S.35a)
(—pmd e + (u = Bgmd?e?#=50)) = Eye "5/ (myme)*'* | (S.35b)
and with N = 2(L/a)?
(L/a)* (ksT)"/? ksT )/
" =N ksT . S.35
Vor3/2p3 2mwh3 B ( ©)
Inserting equations (S.35) and (S.34) into equation (S.33), we now obtain the result
kT 3/2 BE. /2 3/4
U(T,N) - U(T =0,N) = N (27rh3> e PP/2 (mymc)¥* (3ksT + Ey) . (S.36)
The zero-temperature energy
Nh?7?
UT=0,N)=— S.37
(r=0,5) = -2 (5:37)

that we subtracted is just the energy of the completely filled valence band.

We call N; the number of electrons in the conduction band. In the particle-hole picture this is also equal
to the number of holes in the valence band. Assuming now the behavior of ideal gas particles for both
electrons and holes, the internal energy of electrons and holes is given by

3 3
U. = §chBT+ NcEg Un = ichBT , (S.38)
where Eg describes the energy offset of the conduction band. The total internal energy is then
U= Nc(3ksT + Eg) . (S.39)
By comparing this with equation (S.36) we find the number of electrons in the conduction band
ksT \*? _BEg/2 3/4
Ne=N - € vITc ) Al
(27rh3) e (myme) (S.40)

which is exponentially suppressed by the size of the bandgap.



ETH Statistical Physics. HS 2013

Eidgendssische Technische Hochschule Ziirich

Swiss Federal Institute of Technology Zurich Solutions Sheet 5. Prof. Manfred Sigrist

Exercise 1. Canonical quantization of phonons

We consider a chain of N atoms of mass m and coordinates x,, with n = 1,...,N. The
atoms interact through a potential V' (z,,) = V(z1,...,zxN) that can be written in the harmonic
approrimation as

N N

> liter = un)? + 5w (i, 0

n=1 n=1

Viu, ..., uy) =

where u, = x, — ZTp, |uy| < T, measures the (small) deviation from the equilibrium position of
each atom Z,, = na, a being the lattice constant. In (1) X is the elastic constant of the chain and
the € term constrains each atom at its equilibrium position. The kinetic energy of the atoms is
readily written as:

T(in, ... ian) = %mZ(u’n)Q. )

a) After writing down the classical Lagrangian of the system and the corresponding equations
of motion (Euler-Lagrange equations), solve for the normal modes by imposing periodic
boundary conditions (PBC, u,, = un,+n). What are the symmetries of the system for
2 = 0?7 Comment on the resulting spectrum in the two cases 2 # 0 and 2 = 0. In the
latter case, how does the spectrum look like in the long-wavelength regime?

Hint. Solve the E-L equations with an exponential ansatz u, o e!*7¢=“t) and impose PBC to
obtain the normal modes w; = w(k;). The general solution will look like:

N

un(t) = Z[Alei(kl”a_“”t) + c.cl, (3)
=1

where the A; are fized by the initial conditions. The long-wavelength regime is characterized by
k< 1/a.

Solution. The classical Lagrangian is readily written as:
1N
L(ut,...,un,U1,...,UN) = L(Un,Un) =T -V = > Z [mu'n2 — AMtUn41 — un)2 — mﬂ2ui] . (S.1)
n=1

Periodic boundary conditions endow the Lagrangian (S.1) with the ring simmetry, ie., L(un,Un) =
L(Untm,Untm) Vm € Z and with translation invariance symmetry (only if @ = 0), i.e., L(un,Un) =
L(un + ax,tn) Va € R. The associated Euler-Lagrange equations of motion are:

d oL _ oL "
dt Ot, ~ Oun (5.2)
= mip = MUnt+1 + Un—1 — 2Up) — m%un,.
The L.H.S. of the equation above is straightly derived from the Lagrangian. The R.H.S. requires a bit
more calculation: for example, when n =1
88—::1 = %Bul [~A(unt1 — un)? — Mug —u1)? — mQ2uﬂ =

1

= —5(9“1 A(wr — un)® 4+ Mug — u1)® + mQQUﬂ = (5-3)

=—[Mur —un) = AMuz —w1) + szul] = — [A2u1 —uo —u2) + m§22u1] ,



where we used uy,, = un4+n for n = 0, 1. The same calculation applies when n = 2,..., N. We have obtained
a coupled system of differential equations, that can be solved inserting the exponential ansatz given in the
hint, u, = Aetkna—wt) where A is some constant. We obtain:

—muw? AeFra=wt) — geilkna=wt) [)\(e“m +e ke _9) — mQQ] s W= 2%(1 —coska) + Q% (S4)

i.e., the dispersion relation

w(k) = \/2%(1 ~ coska) + Q2. (S.5)

The resulting spectrum is plotted in Fig. 1. When € # 0 the spectrum has a gap, such that no propagation
is allowed below the cut-off frequency w(k) = Q. When Q = 0 the spectrum is gapless and lattice
perturbations of arbitrarily small frequency can propagate. Imposing PBC on the lattice, un = un+n
one is able to solve for the wave-number £, i.e.,

L —w i(ka(n —w 1 a ™ 2ml
Agilhna=wt) _ geitka(ntN)=wt) o pikNa _ 3 _ 27l c z k:kl:Nl, I=1...N (S.6)

a
The corresponding frequencies are usually called normal modes, w(k) = w(k;). The general solution of the
E-L equations is then given by (3), as an expansion over normal modes. Specifying the initial conditions

un(t = 0) and 4, (t = 0) Vn identifies a particular solution of the differential system (S.2).

T
!
I

0=

w(kr)

Figure 1: Phonon dispersion with and without pinning Q (we shifted I to the first Brillouin zone —N/2 <[ <
N/2,a=1).

The long-wavelength regime is characterized by small wave-numbers, k; < 1/a. Expanding the cosine
contained in the dispersion relation for k; < 1/a, one obtains a linear spectrum:

) o [x
w(kn) =\ S kia? + Q2 =0 \ = lkila = cplka, (S.7)

such that ¢, = y/A/m is associated to the velocity of propagation of sound waves in the lattice.

Identify the conjugated momenta 7, (¢t) and write down the Hamiltonian for the system
through a Legendre transformation.

Solution. According to the Hamiltonian formalism, the canonical momentum 7, conjugate to u, reads:

N
= Mmip, = fimel [AeiFime=ei) _cc]l n=1,...,N. (S-8)

=1

I
" O

The Hamiltonian is obtained via a Legendre transformation, as follows:

N N 2
H(m1y ooy TN UL, -y UN) = H(T, Un) = Z'&nﬂ'n — L= %Z {% + AMunt1 — un)2 —&—mQQui} . (S.9)
n=1

n=1

We set m = 1 and introduce the dimensionless operators a; = v N Q—#Al, satisfying

[dl,&;,] = 0yy. Use them to elevate uy,(t), m,(t) to quantum operators y(t), 7, (t). Prove
the equal-time canonical commutation relation [, (t), 7, ()] = ihdp, .



Solution. Following the suggestion above, we write the position and momentum in terms of the dimen-
sionless operators ai, d;r, as follows:

1 N

- _ i(kjna—w;t) —

Un (¢ —E \/ ae —|—hc]:
=1

N N
ﬁ_n Z ) |:A 1(k:lna7wlt)_h.c.:|

We now prove the canonical commutation relation, making use of the postulated bosonic algebra [a;, &I,] =
o

h
2\ 5

3 @ [al (t)etkine h.c.] :

=1

—

a(t)e™rme 4 h.c.} ,

-

=

(S.10)

—1

Sl

1 ih ! i n—k;n')a—(w;—w;, —1i n—k;n')at(w;—w;/
[ﬁn(t),ﬁn/(t)}: v Z W &Z’Af]e[(kz kyn')a—(wi—wp)t] _ [al,al/] [(kin—kpn')at(w— ,)t])

= 1 th (eik’(n_n,)a —&—e_ikl("_n/)a) = @i [(27))(n —n')/N] = ilidpp.
N 2 N — o

(S.11)

The sum in the last passage is calculated as follows. If n = n/ the sums gives N. If n # n’ we exploit the

algorithm:
N

N
S:Zul - Sp=S—pu+pNtt = S:%7 (S.12)

such that the sum in (S.11) becomes:

a iky(n—n')a —ik(n—n")a cos[2m(n — n')/N]| — cos[2n(n — n')(N + 1)/N
Z(()e()):[( )/N] [27( )( )/N]

1 — cos[2n(n — n')/N] oc sin[m(n — n')] =0.

1=1
(S.13)
Note, that this is equivalent to the known completeness of the basis vectors of a Fourier series, i.e.,

N
SN — NG (S.14)
=1

On the other hand, in order to preserve the commutation relations in Fourier (reciprocal) space, [d, d;,] =
&7, orthogonality is required, i.e.,

e27‘rin(l—l’)/N _ N5ll/, (815)

iM-

which is fully consistent with the equivalence of the two representations.

Write the Hamiltonian in (c¢) in terms of the new operators a;, d;. Write a general eigen-
state. What is the ground state? What defines an excited state?

Solution. We calculate each term in (S.9) separately, starting from:

~ 2

— aa,, a; Gy a; aj,

AN

hnJwiwy AT A i(k,r— na A A i /)na AT A —1 1)na hw
= 3 S [ofafan) (0 S 40 — () (0B HHO — (afal e hon] 4 30 R

(S.16)

From the first line to the second line we exchanged [, 1" in the second summand and made use of the bosonic
algebra of the operators. Exploiting (S.15) we can finally calculate:

i L, : hw
2= 30T [palan - e —afal o] + 30 R .17
l

in which we used the parity property of the cosine, i. e., w; = w—_;. We are now following the most general
approach in which [ € Z, despite in the present case I € N. We will see that the two time-dependent

—hy/ / . ) ) )
Tp Z wiwy |:(& & )(t)ez(kl+kl/)na o (A AT )(t)ez(kl—kl/)na o (ATA )(t)ez(kl/—kl)na +( AT A T)(t)e—z(kl+kl/)na] —



contributions above will be eliminated by the position terms in the Hamiltonian; in the present case of
1 € N those terms are immediately zero as I’ cannot be equal to —I, but we decided to keep them in order
to remain as general as possible. In the same way we obtain for the remaining terms in (S.9),

=2 WNyeo e (@) OO @l RO 4 @) (e M0+ (afal e ] <
Z [ @ al/)(t)ei(kl/—kz)na + (dl&l/)(t)ei(kl-&-kl/)na + (alal)(t)e —l(kz+kl/)na:| +Z Q2
w 4N1 /wzwl/ ! 14 . iNw’
(S.18)
and v
02 hQY? “Zit | giat 2t hQ?
8 ~ ) W] ~ Wy ] 1
5 ;u ;—4 [alaeraza e +ajal e +Z4wl (S.19)
Finally,
N
A . 2AA[1 — cos(kia)] it | atat 2iw 2hA[1 — cos(kia)]
5;(’“71-&-17“71 Z— [2 Tay + aa_e” ™" +afal e lt] +Z4—wz'
(S.20)
Combining (S.19) with (S.20) and making use of the dispersion relation (S.5) one obtains:
_ hw —2iw;t ATAT  2iwpt hUJl
(S.19) + (S.20) = zl: 1 [Qalal + aqa—e” " - ajal e ] + zl: T (S.21)

and finally the Hamiltonian 7 = (S.17) 4 (S.21), i.e

N
N 1
H=> hw (a}al + 5) : (S.22)

=1

which is explicitly time independent. The state

1 o\
IN) = In,na, o) = [ == ()™ [0). (.23)
1=1 !
with N, = E{il niy, is an eigenstate of the Hamiltonian with energy

N

H|N,) Zﬁwl(er )\N) D> alNy) =€ |Ny). (S.24)

=1

n (S.23), |0) is the unique ground state of the system, defined by a;|0) =0VI=1,..., N, with energy

1 N
=3 > b (S.25)
=1

The state (S.23) is normalized to 1 and lives in the Fock space, which is a direct sum of the Hilbert spaces
Hy, of fixed total number of particles IV,. They in turn are symmetric tensor products of NV, single-particle
Hilbert spaces. The occupation number n; defines the number of excitations in the mode {. Excited states,
i.e., with at least one non-zero n;, obey Bose-Einstein statistics and are called phonons.

Exercise 2. Planets as blackbodies?

The Stefan-Boltzmann law states that the emission power per unit surface area of a blackbody

reads
274

K,
Pup =0T with o = ﬁ ~ 5.6704-10% Js~'m 2K, (4)

a) Making use of the Stefan-Boltzmann law, estimate the temperature of the Earth, Mars
and Venus as if they were blackbodies.

Hint. The energy emitted and absorbed has to balance.



Solution. The Stefan-Boltzmann law gives a power per unit surface of emission. In order to estimate the
temperature of the Earth as if it was a blackbody, we need to equate the energy emitted with the energy
absorbed (Kirchoff’s law). The Earth absorbs the radiation from the Sun, therefore we need to calculate
the amount of solar energy that reaches us. In order to calculate the total power emitted by the Sun we
need to integrate (4) over the Sun’s surface, i.e.,

Ps = P - AnR% = 0T - ATR%, (S.26)

where Ts and Rgs are the Sun surface temperature and radius, respectively. This power is spread all over
the universe, and reaches the Earth after traveling the average distance ao (also called astronomical unit).
Therefore, the power per unit surface reaching the Earth is

Ps 3
abs = ———= ~ 1.4-10° W. S.27
Pabs = 1 2 (8.27)

In order to obtain the total power absorbed by the Earth we finally need to multiply the quantity above
with the cross section of the Earth sphere, i.e,
Ps 2 PsR}

Pabs = 3" 7I-FEE -
dmal 4a?

(S.28)

where Rg is the Earth radius. The total power emitted by the Earth is still given by integrating (4) over
the Earth surface,

Pg = Py - A7R% = 0Th - 47 R%, (S.29)
where Tk is the temperature we want to estimate. We thus equate the emitted and absorbed power:
T4 RpATRE R R
oTg -drR% = TS5BS o — T3S o T = T [ 222 (S.30)
4ag 4ag 2a0

which is independent of the Earth radius. Using for Ts ~ 5778 K, for Rs ~ 6.96-10°m and for ao ~
1.496 - 10" m we obtain
Te ~ Ts-1.525-107%/% ~ 279 K. (S.31)

We can exploit the calculation above in the cases of the other planets, making use of ayr = 1.524a0 (average
distance of Mars from the Sun) and av = 0.7233a0 (average distance of Venus from the Sun) to get:

Tar ~ Ts-1.236-107%/% ~ 226 K,

s (S.32)
Ty ~Ts-1.793-10"%/? ~ 328 K.

The correct results for the average temperatures are 288 K for the Earth, 218 K for Mars
and 735K for Venus. How do they compare with the estimates in (a)? What could be the
reasons of the discrepancies?

Solution. There are many approximations in the calculation (a). There are mainly two effects, one
lowering and one increasing the real temperature. First, all planets have albedo, such that part of the
incoming solar radiation is scattered without absorption. This effect reduces the absorbed power and
therefore the temperature. On the other hand, planets have an atmosphere, such that both the incoming
and the emitted radiation suffer from reflection. The exact effect of the atmosphere is very complicated.
For the Earth it turns out that the amount of radiation emitted from the surface (which, due to the lower
temperature, has a higher wavelength) suffers more from reflection than the incoming Sun’s radiation
(mainly in the visible range of the electromagnetic spectrum), such that the resulting temperature of the
Earth is slightly higher than the blackbody estimate. A similar reasoning is valid for the other planets,
whose atmospheres are mainly composed of CO,, with the important difference that the atmosphere of
Mars is much thinner (therefore yielding a good estimate) while the one of Venus is much thicker (therefore

yielding a bad estimate). Then, planets are not exactly spheres..:-)
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Exercise 1. Playing around with wave functions in second quantization.

In the formalism of second quantization, a general state of NV particles at positions 771, 75, ... is
given by

oL - 1 - A
|71, Ty ey TN ) = ﬁqﬁ (ry) - ot (r1)]0) , (1)

where |0) is the vacuum state and the field operators ¥ () are defined as
U ()= on (7) ax (2)
k

with aj the annihilator of mode k and ¢y (7) the one-particle wave function of mode k.

Consider a state [1)) of three particles in modes kq, ko, and k3. Consider its wave function

W (71, o, 73) = (71, o, 3| 0) = (71,7, 73 af af af |0) . (3)

(a) First calculate the vacuum expectation value
<0‘&“€1 d62d£3d23&};}2&£1 ‘O> ? (4)

for bosons and for fermions.

Solution. Let’s calculate using the usual (anti-)commutation relations (write for short a3 = s, G2 = k.,
a1 = Gk, ):
@1dmanalalal = aram [mg + a;an] alal = a [&ménks + (5mk3 + a;am) an] alal
= [A1GmOnks & @1Omksn + Ok Gmén] abal +a'(...)
= [(@16mky % Oty lim) Onks & Oy (A10nky £ Olkylin) + Otks (@mOnky £ Omryan)]al +al(...)
= Otky Omko Onks T Otk Omi; Onks £ Otky OmksOnky + Otk Omis Onky + Otks Omky Onky I Oiks Omis Onk, + dT(. .)
=" fijkOuh, O, Ok, + ' (), (S.1)

ijk
where the sum ranges over all sets of indices ijk which are all different, and where fijx = €;; is the
fully antisymmetric tensor (Levi-Civita) for fermions and fijrx = 1 for bosons. We do not care about the
terms which start by a creation operator (all symbolized above by at(.. .)), because they will vanish once
sandwiched between vacuum states. The vacuum expectation value is then

(0] uéimanalabal [0) = fijkOu, Omk, Ok, - (8.2)

ijk
For N particles, by similar procedure the expression generalizes to

(Olag, .. aeyal .. af 10) = D" fiy inOtiki, - Ooxks, - (S.3)
i1 U\

(b) Determine (7, 72,73) for bosons and for fermions. What symmetries does the wave
function possess?



Note:

Solution. The wave function is
oo 1 TN s a o atata
W (71,72, 73) = —= (0| W1 W2 salalal |0) F D 61 (1) b (72) 6 (%) (0| wéimanadatal |0)

r D ik Otk Ok i, 81 (FL) 1 (P2) 61 (F) = r D ik Bk, (F1) i, (F2) bk, (73) - (S4)

Thus, the wave function is an explicit symmetrization (antisymmetrization) of ¢z, (71)¢x, (72) ¢y, (73) for
bosons (fermions).

Determine the normalization of the wave function for fermions and for bosons. First
consider the case where k1, ko and ks are all different, and then study the case where two
or more modes are the same. What do you observe?

Solution. Recall the wave function is given by

P(F, 7, 75) = fommk )bk, (F2) bk, (75) (S.5)

© gk

and thus its normalization is
/d3F1d3F2d3f’3 Y* (71, o, 73) (71, o, 73)
1 — — — * — — * — — * — —
=3 D fianfugn /d37”1d37"2d37“3 Gre; (T1) Pk, (71) br; (T2) Pk, (72) Dry (73)Pr,, (75)
3, qukfm/k/ / &7y bk, (71w, (71) / &°7 or, (Fa) b, (7o) / d°Fs b, (75) iy, (73)

=31 Zfijkfi’j’k’ Okikyr Okjk s Okkyy - (5.6)

This expression obviously generalizes to N particles as

1
(V]y) = N Z fir i fiy ity 51@1&1, "'5kiNki§V . (8.7)
i1in
ihily

Assuming that ki, k2, k3 are all different in (S.6), then all terms in the sum that don’t satisfy i = i, j =
j',k = k' vanish because of the orthgonality of the single-particle states, and thus

1
d)W} 3| Zfz]k 6kik,i/5kjkj/5kkkk, = ? fojk =1. (S.S)

Additionally, if two or more modes are equal (e.g., k1 = k2), then all possible permutations of matching
modes must be included (e.g., if k1 = ko, then the term i = j',j = i’,k = k' also needs to be counted in
the above), multiplying the result by an additional factor N,! for each repeated mode n (N, then being
the number of particles in mode n):

@ly) =Nl = [ Na! (S.9)

modes

Of course, for fermions N,, is either zero or one, such that these factors do not contribute. However they
must be included for bosons.

for the lazy, it is also possible to do the whole exercise with two particles only. For the motivated,

calculate it for N particles.



Exercise 2. Magnetostriction in a Spin-Dimer-Model.

As in Exercise 2.3, we consider a dimer consisting of

two spin-1/2 particles with the Hamiltonian 51 52
w
Ho=J (515 +3/4) , e v 9
! 0 x

with J > 0 (note that the energy levels are shifted as
compared to Ex. 2.3). This time, however, the distance
between the two spins is not fixed, but they are connected to a spring. The spin—spin coupling
constant depends on the distance between the two sites such that the Hamilton operator of the
system is

]52 mw?

_ T A2 24 J . d
H= 2+ i+ J(1 - Ad) (sl 52+3/4) , (5)

where A > 0, m is the mass of the two constituents, mw? is the spring constant and where z
denotes the displacement from the equilibrium distance d between the two spins (in the case of
no spin-spin interaction).

(a) Write the Hamiltonian (5) in second quantized form and calculate the partition sum, the
internal energy, the specific heat and the entropy. Discuss the behavior of the entropy in
the limit 7" — 0 for different values of A.

Hints. Set h =1. Rewrite the Hamiltonian using the total spin as in Ezercise 2.3, and bring it by
completing the square to the form

ﬁz 1 2 v2 T

where Ny is the projector on the triplet subspace, and X and J are appropriately shifted quantities
T and J (X may depend on iy ). Recall then the creation and annihilation operators of a harmonic
oscillator.

(b) Calculate the expectation value of the distance between the two spins, (d + &), as well
as the fluctuation, ((d + #)2). How are these quantities affected by a magnetic field in
z-direction, i.e., by adding an additional term in (5) of the form

Hp = —guBHZS’f ?
i

Hints. Write first those averages in terms of (i), which you can calculate explicitly. Recall that
for a harmonic oscillator, (X) vanishes, as well as {a), (a°) etc.

Recalculate the partition function adding the magnetic field term and see how this affects (7i;).

(c*) If the two sites are oppositely charged, i.e., £¢, the dimer forms a dipole with moment
P = g(d+ ). This dipole moment can be measured by applying an electric field FE along
the z-direction, resulting in the additional Hamiltonian term

Mo = —q(d+ 2)E .

Calculate the susceptibility of the dimer at zero electric field,

X(el) L O*F
0 OE2 |,



and compare your result with the simple form of the fluctuation-dissipation theorem, which
asserts that

X oc (d+2)%) — (d+ ). (7)

Hint. Proceeding as in Section 1.5.3 of the lecture notes or Exercise 2.1 (e), find out which step
no longer applies. How should (7) be “corrected”?

Plot the susceptibility at zero electric field as a function of an applied magnetic field H
and discuss your result.

Solution.

(a) As in Exercise 2.3, the Hamiltonian H¢ may be written in terms of the total spin operator S=25 + §2,

5«'2
H0:J7

Let us set i = 1. Then (0|S?|o) = h2S(S +1) = S(S + 1) with S = 0,1 for the singlet and a triplet state,
respectively, so that 7, := 52 /2 is just the projection operator onto the triplet subspace, satisfying

R 1 if o is a triplet
(o|fir]o) = .
0 if o is a singlet

Using this operator, the total Hamiltonian has the form

-2 2
mw® A
szp—m—FTxQ—i—J(l—/\m)m
-2 2
:L+MX2+JTAH7
2m 2

where we have “completed the square” and introduced the shifted coordinate operator

- N JA
X=z—- W’I’Lt s (SlO)
and the renormalized spin-spin coupling
- J\?
= 1-— 11
J=4 ( 2mw2) (8-11)

and used the fact that 77 = ¢ (it is a projection operator).
We note that X and p satisfy the same commutation relation as & and p. Therefore we may introduce the
corresponding raising and lowering operators

o= /5 (24 o)

at = /™ ( X Lﬁ>
2 mw
using which the Hamiltonian can be written as follows in second-quantized form:
1 -
H:w(aﬁa+5) + Jhe . (S.12)
The canonical partition sum is
Z = tre "M = Z Z(n,zﬂe_m{\n, oy,
n=0 o

where |n) denotes the eigenstates of a'a. We observe that the harmonic oscillator term commutes with the
spin dimer term in the Hamiltonian. Therefore, the partition function factorizes,

Z = Zha,rmonic oscillator * Zspin dimer - (813)



The partition function of the harmonic oscillator is given by

1

1
- Z - 1 —Bw/2
Zharmonic oscillator =— tre B Hnarm. ose. = e Bw(n+2) =€ o/ 17&" :
— e~

n

(S.14)

The partition function of the dimer is simply given by

—BJ
Zspin dimer — 1 +  3e i

singlet state  triplet states
nt=0 ng=1

We then finally have

e—ﬁw/Q

1—e B

Z = Zharmonic oscillator * Zspin dimer —

(1 n 36“”) , (S.15)
It follows that the internal energy is given by

0 0 0
U=—-—— log Z === 10g Zharmonic oscillator — 73 log Zspin dimer

B B oB
w w 3J w Bw 3J
+eﬁj+3—§(§0th7+eﬂj+3

Therefore, specific heat, free energy and entropy are given by

ou
C= 87T = C’harmonic oscillator + Cspin dimer
W I VA
~ 4kpT? sinh*(Bw/2)  kpT? (ef7 + 3)2’

F = _kBT log Z = Fharmonic oscillator T Fspin dimer

= % + kpTlog(l — e ?*) — kpT log(1 + 3e_ﬁj),

S

_F i 5
_U = d — kplog(1—e ") + 3i] + kg log(1 + 3¢~ 77).

T ~ T(ePo—1) T(eB7 +3)
Note that the first two terms of the entropy always vanish in the limit 7" — 0.

As long as J is positive, it is easy to see that limr_,o S = 0. In particular, this is the case for A = 0, where
J=J.

If we make A large enough, namely A > A\, := \/W , then J becomes negative and the entropy is in
the limit 7" — 0 given by

T—0 T—0

lim S = lim (% + kB log3efj/kBT) = kplog3.

For A = A, J is equal to zero and limr_0 .S = kg log 4.

This result corresponds, of course, to the number of degenerate ground-states for the spin configuration:
For positive J, the ground-state is unique (the singlet) and thus the entropy has to vanish as T — 0.
For negative J, the ground-state is the triplet and thus three-fold degenerate. When there is no effective
coupling between the spins then there are four degenerate ground-states, leading to an entropy of kp log 4.

The mean distance between the two sites is given by

<d+§;>:<d+f(+ A ﬁt>=d+ JA (foe),

mw? mw?

where we used (S.10) and the fact that the expectation value of the (shifted) position operator X for the
harmonic oscillator vanishes. The expectation value of the “number” operator 7n; is computed using the
fact that the partition sum factorizes,

N 1 N ,5];“ 367[3‘; 3€7ﬁj
ngy) = ———— o|ne o) = = =
< t> Zspin dimer za:< | ¢ | > Zspin dimer 1+ 3676]

(S.16)

Therefore, we find for the expectation value of the distance between the two spins

JA 3
mw? eBJ + 3

(d+&)=d+



To calculate the fluctuations of the distance, we write

(d+2)) = <(d+f(+ I m>2> — 4 (X% + nﬁz <2d+ I )(ﬁg, (8.17)

mw? mw?

where we have already omitted terms linear in X and used that 72 = f;. For a harmonic oscillator,

<X2>:<( Zinw (a+a*))2>—ﬂ;<afa+;>—n;(;Jreﬁwl_l) , (S.18)

because a'a is the bosonic number operator of the harmonic oscillator, and we know that its average gives
the Bose statistics.! We thus find that

<(d+@)2>:d2+i(1+ ! >+$2 (2d+ JA)(m), (5.19)

mw \2 efv—1 mw?

with () given by (S.16).

In the presence of a magnetic field, the only change is in (7;). (Indeed, we did the calculation of the
fluctutations without assuming anything about the density operator on the spin part of the dimer, and
keeping the abstract averaging operation (-).) We need to recalculate the partition function though:

Zdimer with H = tr o BT aimanpH Si) — | 4 o= (eiﬁguBH +1+ eBguBH)

=14e TR (1+2cosh (BgusH)) . (S.20)

It follows then that

. 1 . _B(Jjn e B 1+ 2 cosh H
(R p—— AT [ g ¢ BogunH)) (g gy
Zdimer with H 1+ e P (14 2cosh(BgusH))

Note that (f:) is a monotonously increasing function of |H|. Thus, by applying a magnetic field we
can populate the triplet states and thereby increase the distance between the spins. This effect is called
magnetostriction.

We first consider the case without external magnetic field. Then the Hamiltonian is given by

o) 2 2 2
_P L mw e gl OB
H= o + 5 X+ Jng ms? dqFE (S.22)
where now

N . JN qF

X=1— mwz neg — W 5 (8233,)
- J\? M\E

= 1-— — . .23b
J J( 2mw? mw2> (5.23b)

In the same way as in (a), we find that the partition sum is given by

e—,ﬁw/Q

4 = ——
1—e P

)

(1 + 3e—ﬁj) eﬂ(qu+q2E2/(2mw2))
and the free energy is therefore

2E2 _ a7
T2 94 kpTlog(l — e ) — kpTlog(l + 3¢ 7).

F = —dgE —
dq 2mw? 2

L If you’re not convinced, or if you forgot how to prove this:

1oy 10 1 -1 ~ta o L\ —pw(atatd)
mw< a—+ 2> - mw Zharm. osc. tr |:(a a—+ 2 €
1 1 10 —Buw(ata+rl) 110
=—Z =55t [ 2} = ————10g Zharm. osc.
mw  harm. osc. ( B8 Ow te mw B Ow 08 Zharm. osc

11/ B 1 ) gy = L (1 1
o mw5< 2 1—eBw (e ) (ﬁ)>_mw<2+eﬁw—1)'



In order to compute the susceptibility, we have to differentiate the free energy twice with respect to the
electric field E. Only for the last term this is somewhat non-obvious: the first differentiation yields

1o} _BJ 3 Aq JAq 3
——kpTlog(1 43¢ 7)) = — = —
oE"™® og(l +3¢77) efJ +3 mw?  mw?ebl +3

Taking one more derivative we find that

2

0 —BJ
ﬁkBTlog(l +3e 7)=p (

JAq ) 2 3ehd
mw2 (eﬁj + 3) 2
For E = 0, this can simply be expressed in terms of the mean triplet number,

82
OE?

kT log(1 + 3¢ 7)) = 3 ( JAq ) ((he) — (A)?)

mw?

E=0
indeed, from (S.16), we have
N ~ N2
—8J -8J —8J . .
- 3e (1 + 3e ) - <3e ) 3087 3087

(fe) — (Ne)” = (30 29)’ = (1150 59)" = EEe (S.24)

Therefore, the susceptbility at zero electric field is given by

mw mw?

N (29) (o) - ). (5.25)

If we try to use the fluctuation-dissipation theorem to calculate the susceptibility at zero electric field, we
find that

((d+2)%) = ((d+ &)
0 () (e 2 - i - ()
JA

mw2)2 () — (7e)?) . (S.26)

:<X2>+(

Obviously, this is not proportional to the result found in (S.25).

This discrepancy is due to the fact that this simple form of the fluctuation-dissipation theorem is only
valid for classical systems (or simple quantum systems).2 In this case, the coupling does not commute
with the rest of the Hamiltonian. However, it is still possible to apply the reasoning done in Section 1.5.3
of the lecture notes and Exercise 2.1 (e) by looking at the “correct” quantities. We will proceed with an
analogous derivation here, and we will point out the step where the derivation fails for the “incorrect”
choice of variables. There, the fluctuation-dissipation theorem is derived for magnetization M produced in
response to a magnetic field H with some susceptibility xas. Here, distance (d+ Z) is produced in response

to an electric field E with some susceptibility Xéel)

. In both situations, we have added a linear coupling
term to the Hamiltonian of the form —M - H, respectively —q (d + %) - E. However, the “correct” degree of
freedom of the Harmonic oscillator is X, and not . The difference is that now & is dependent on E and

not X. Proceeding as for the magnetization case, we write

0= tr{((dJrfﬂ) —(d+%)) eﬁ““”)} , (S.27)
and we differentiate this equation by E. Here we notice a first few differences with the magnetization case.
While we had M = fg—g, if we calculate % we obtain

OH qF JA 5
= d— e | = — (d AfX), 2
OFE e (mw2 + mw? m) et (5.28)

2 To convince oneself, a simpler setup is to consider a harmonic oscillator with a charged particle in a uniform
electric field, both in the classical and in the quantum case, which is a simplification of the current problem but
2
which exhibits similar behavior. (Use H = £ + 1mw’z” — qzE)



where we used (S.23a) in the second equality. Note that this quantity is proportional to 7; and commutes
with original Hamiltonian (this will be relevant later). This gives us for the free energy®

oF oH L
9E _<aE>__q<d+”>’ (5.29)
we also need the derivative of d + &, given by

o o
o8 T = 58

2

Jq . | qE
(d+X+ T fe+ 2 2>: )
mw mw mw

Now, differentiating expression (S.27) by E,
0=t {((d+8) —(@d+8) ST} = { (L%E@ — i’)) eW—”)}
+tr{l(d+a) = (@d+8)]e” " 5 (—gld+d) +q(d+a- X))} . (S30)

But wait. The differentiation of the operators inside the second trace needs a little bit of justification here.
First, we can rely on some basic differentiation rules for operators such as

1o} 0 0 0A OB
a—Etr( D)= traE( 2 and 8E(AB) aEB—}—Aa—E.
Then, in general, for an operator A and a function f, one has that
n __ 8A n—1 aA n—2
ch—A znj (MA +AZSA +) , (S.31)

where ¢, are the coefficients of the Taylor expansion of f in terms of a power series.* Now, assuming that

(A, gg] =0, we see that % commutes through the A’s and we can write

B B w1 DA DA
(‘TE(A)*Z; nA"t o = (A) o - (S.32)

In our case, we have that g—g x i commutes with H, and so

0 pn_ o —pn OH
ap°  ~ Pe

OF

Note, crucially, that had we chosen to work with the other degree of freedom # (having X depend on F
and not &), we would have had g—g = —q(d + &), which obviously does not commute with #.

The second term of (S.30) is then obtained by using

O swr-n) _ O pr —pu_ pra(OF\ _pn | pr g snOH _ o sy (OF OH
E)oh =gp® ¢ =¢ PBlag)e e (hegg =pe 9E 0B )

keeping in mind that F' is a scalar, not an operator.
Continuing from (S.30), we find that

e <[<d+f>—<d+f>r+ﬂ<d+f>—<d+f>]>

:6q<[<d+5@>—(d+;@)] >+5q< [ JA ot qED

= Bq [((d+2)*) — (d + £)*] + Bg (X)

3 In general, for an external parameter E the Hamiltonian can depend on, one has

OF 10 11 0 1 _an OH OH

OF | 100070 110 lomm] 2 Ly [oom®) _ (Y
9E ~  BOE ° 37 0E z"|° ok oF

where the differentiation inside the trace can be justified by using the Taylor expansion of the exponential and

5 E] 0.
4Note that if we enclose Eq. (S.31) inside a trace, then we can use the cyclicity of the trace to prove the

using the cyclicity of the trace, without assuming that [H

assertion in the previous footnote.



N q OF OF
repeatedly used (X) = 0, and noticed also (X#) =
subsystems. It follows that

where we have used that % = 109 oF

el
X 1
B pmw?

This “corrected” fluctuation-dissipation theorem now agrees with the expressions (S.25) and (S.26).

= [{(d+2)%) — (d+2)°] +(X?) . (S.33)

Additionally, if for high temperatures we expand the expression we found for (X %) then

2 (el)

o A \2 Xo

ne) — (Nt = .
) () = () = 4
The presence of a magnetic field again only affects the occupation number of the triplet state, (7:), from
the expression in (S.16) to the one in (S.21). The second term in (S.25) then varies. The following plot
shows the susceptibility at zero electric field (solid line) as well as the triplet occupation number at a low
temperature (dashed line) in arbitrary units.

((d+2)%) = ((d+2))* ~

1 ( JA
Bmw? mw?

A

0.5

The susceptibility is largest when the triplet occupation number changes, i.e., when H = +H. = :I:j/g,uB.
This makes sense since in that case the system is most susceptible to an external influence like an electric
field.
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Exercise 1. Pair correlation functions for fermions at finite temperature
In this exercise we want to study the correlation functions for a system of free independent

fermions at finite temperature, especially in the high temperature limit.

~ tr{e’BH/OA} ~ . ~ A
(a) Evaluate the thermal average (O) = ———z— for O = f; and O =7 at T =0 and
tre

atT>0,WhereH':H—uNandB:kB%.

Solution. The T = 0 is the ground state expectation value (®o|O|®o).

fg|®o) = O(kr — k)| Do) =: ng|Po) (S.1)
ﬁ,;fl§'|¢’o> = ﬁlgnq|@o> = n,;nq@o) s (S.2
where k = |E\, kr is the Fermi wave vector and O(x) is Heaviside step function:
0 ifz<O
O(z) = . (S.3)
1 ifz>0
Therefore <q>o|ﬁ]:|(b0> = n,; and <q)0|ﬁgﬁq‘|q)o> = n,;nq = <‘I>0|ﬁg|<po><q)0|ﬁq|<bo> .
For a non-interacting model
{ H Z (ze Bep)iﬁ} { 'FlE (2,’6 5€)€)ﬁﬁ} ﬁ]; (Ze—ﬁﬁjz)ﬁlz
() FAR = 7z=0,1 _ =01
' I X (s 7)™ T (e )
P n5=0,1 nEZO,l
0+ ze F_ 1 _ . 1 —ng, (S.4)
14 ze PR 14 z-le P 14 e Pleg—w)
where z = e .
M % (o) i (e 8) 5 4 S g (o)
5 (R q) Ap=0,1 7z=0,1 fig=0,1
(Apng) = =
H (267665) P
P fiy=0,1
g (zeiﬂeﬁ)ﬁ’; fig (ze ﬁ‘q')ﬁ‘f
= R = (i) () = (8.5)
= e B€k)ﬁE (e ﬁeq)ﬁq = (ng)(hg) = ngng . .
fiz=0,1 fig=0,1

General remark: To obtain the correlation function at finite temperature (Section 3.6.1 from the Lecture Notes)
we have to use the Fermi-Dirac distribution instead of the step function. Formally, the results written in terms
of nj remain the same.

(b) Show that the one-particle correlation function is

o) = [ gy 1)

where ng is the Fermi-Dirac distribution.



Solution. By definition:

P N S D A S | CREAR) LRt ] kR Pk ki
2 go(B) = (Wl Bl = L3 e ) = g omee = [[[ G 59

i,k E

where we used that ng, = ng.

(¢) Show that in the high temperature limit

. _nR?
gs(R) me >, (2)
where \ = % is the thermal wavelength. Compare this result with the one you
know for T" = 0.

2
Hint. [% ew™thr — /Tei Va e Ry,be C.

272 272
Solution. Using the thermal wavelength we have Be; = ﬁ% = A47'f .

In the high temperature limit we could approximate nj ~ e Pler=r | Also,

LS /// d’k e Bleg—m) — e /// d’k 67% = e 2r ’ = e’i . (S.7)
2 (27) (2r)? 2r) 2 \e

3 _A2g2
%6_ ar

Replacing the chemical potential we obtain nj ~

The correlation functions becomes:

n = dsk —B(ep—p) —_ik-R ’fL)\3 1 o0 —%—ik R 3
- ~ : - » I zfw
2gs(R) /// (271_)36 ETHe 5 @) 100 dk.e

nA3

1 /2r\% _=@2 n _xi2
AN S Boal . o
== (27r)3(/\) e x 5¢ - (S.8)

o =R2
Therefore g;(R) ~ e~ 2 . The oscillations from the T' = 0 case are no longer present.

(d) Show that in the high temperature limit

— — 2n B2
= g(R)+gr (R e A
o(73) = 91t )2 n(B) . 3)

Compare this result with the one you know for bosons.

Solution. The pair correlation function for fermions with different spins is g, ( ﬁ) = 1 while for equal-spin is
gss(R) = 1 — gs(R)? . Therefore

141 _ 27r1§2 _ 27r1§2
. —e A e A
g(R) = —y = 1- 3 (S.9)

—727&2 . . .
For bosons the result is 1 + e »2 . Therefore up to the prefactor % the two pair correlation functions are
symmetric around g(R — 00) = 1. At R — 0, fermions avoid each other g(R — 0) = % (1 comes from fermions

2
with different spins) while bosons like to stay together g(R — 0) = 2.

(e) How does the density depletion change? It is defined as n [[[ d®r (g(7) — 1).



Solution. The density depletion is just

w[[[@rwer -0 == [[[@rowr =% [[[are5E -2

which decreases fast with the temperature o T3 .

(\}\5)3 = —4%,\3 . (S.10)



Exercise 2. Single-particle correlation function for bosons

Consider a homogeneous gas of free independent spin-0 bosons at T" > T,.. The single-particle

correlation function is given by
_ 3k B
o) = ||| mamee ™ )

(Section 3.7.2 from the Lecture Notes).

ET‘l

_ h2k? L
Where EE = om and 'I’Lk W

(a) Show that in the R — 0 limit

where n is the particle density.

Solution. Here we reused the notation from Section 3.7.2. If we normalize the value of the correlation function
we have do the following change g(R) — @ .

We have .o,
o - —ik - -

e E o 1+(—ik~R)+M— .
R—0 2! 2

In this limit the correlation function becomes

/// 2r)? ’“( iglé_(E'ZR’f):[ﬁ[H[S’ (S.12)
I1=///(§3T];3n,;:n (S.13)

(S.11)

with

A3k oo © gk x 1
L= gme T ) e = = ‘ = 14
2 /(Qﬂ)a ( ik R) nE /0 2n)? (—ikR) nk/o d¢ 71d(c059) cosf =0 (S.14)

—_—

1/2-1/2=0
where we defined R = |§|7k = |]§‘ and we used €; = h;lf _ h;:f = ek, nz = Nk, and
dsk - ﬁ /OO dk  —k’R’ny, /7r /1 2
= d d(cos 6) cos” 0
/// 2 , (@mF 2 ; @ . (cos0)
N

1/3+1/3=2/3

3, -
R [ dk R I g kg B
_—?V/0 BE knk/ dqﬁ/ d(cos ) 5 fff(33§3nk ///(2W3nk
_,_/

1+1=2

= —n— (k%) . (5.15)

Therefore g(R) ~n (1 — %(EQ)) .

(b) Study (k2) in the low and high temperature limits and derive the correlation function g(R)
in these limits. Express the result in terms of the thermal wave length \ = 1/% .

Hint. [;° dx p2nemar’ — ﬁ% VaeRy,neN.
Hint. ((z)T(z) = [;° du% Vo >1.



Solution. Using the thermal wavelength we have Be;; = 417r %ﬁjiT = X%k P
Variant 1
By symmetry
(k) = (k2 + ko + k2) = 3(k2) . (S.16)
For the high temperature limit we have nj = W ~ e Plg=1)  Therefore
e k —1

d ’f k2o Pler—1) — // dky dk,y / 2o Ae (W k2 2+ Bp

_ lam // dk dky / 27<k§+k§+k§>+ﬂu _2m
2 A2 2
21 2

_2r T 1
X2 /// @m? " e (8.17)

2
where using the hint we conclude that [*_dzaz’e™*" = L [ dze”

3
d’k 6*5(6,;*#)

Therefore (k%) = 5% .

)\2
Variant 2
e [/ (d b kPng Aw [T dkk ', G 1
< > d3k [SS) 2 - Gf ) ( . 8)
IfS Gns T i fo dkk?ny, 2

where G5 = fooo dkk®ni .

It is convenient to write G as

s+1
s 47 1
Gs —/ dkk*ny = / dkk . 1(3)\4211]:2 - / dyy® ( > oy

:(@) /Omdi ! ::(\/E) Fu(z) . (.19)

A 2 z7ler — 1 A

For high temperature we could expand as

s+1 oo s —y? s+1 o 2 2 2
a. — (\/éﬁ) z/ dy L€ _ (v47r) z/ dy y*e Y (1+ze’y ¥ (ze7Y )2+...) . (S.20)
0 0

A 1—zev? A
where y = k7= x = y*. Replacing this into (S.18) we have:
o 2 2 2 4w T'(5/2)¢(5/2)
(k?) dr Fa(z)  anJo dyy'e (1+Z€ (e y)2+.”) Mremem 1T 0
2/ = 32 VIS 20—y2 —y2 22 4.
A FQ(Z) A fO dy y?e=v (1+Z€y -I—(Zey) + ) )\%% it T = oo
s HT—0 ~ 3T T 0
_ _ (S.21)
5z if T — oo % T — oo

where we used that z — 1 for T — 0, gggg; 0.5 and for high temperature we keep only first term in the

expansmn .

However, studying numerically Fx and F> we could see that they are not so different (see Fig 1) , therefore we

could simply approximate <k§) ~ % .

From (a) and the previous result we have
n(1-25) #T-0

n (1 _ 2R %) if T' in-between



...-5:2—-3:4|
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Figure 1: F, and F3 as a function of z.

(c) How would you modify the previous result for the correlation function to describe the
Bose-Einstein condensate regime, too?

Solution. The total density n = ng + n, is the sum of the macroscopic occupation at k=0 and the remaining
one. The previous treatment is valid for the n,, part of the density. Therefore we have:

g(R) =no + nn%ﬁ) . (S.23)

9(R)
P

The normalization stays the same: g(R) —
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Exercise 1. FExact solution of the Ising chain

In this exercise we will investigate the physics of one of the few exactly solvable interacting
models, the one-dimensional Ising model (Ising chain). Consider a chain of N + 1 Ising-spins
with free ends and nearest neighbor coupling —.J (J > 0 for ferromagnetic coupling)

N
Hysr = _JZUZ'UH-l, o; = £1. (1)
i=1
In this exercise we will be interested in the thermodynamic limit of this system, i.e. we assume
N to be very large.

(a) Compute the partition function Zx41 using a recursive procedure.

(b) Find expressions for the free energy and entropy, as well as for the internal energy and
heat capacity. Compare your results to the ideal paramagnet.

(c) Calculate the magnetization density m = (0;) where the spin o; is far away from the ends.
Which symmetries does the system exhibit? Interpret you result in terms of symmetry
arguments.

(d) Show that the spin correlation function I';; = (0;0;) — (03)(0;) decays exponentially with
increasing distance |j — i| on the scale of the so-called correlation length &, ie. T';j ~
e~ l7=il/€, Show that ¢ = —[log(tanh £J)]~" and interpret your result in the limit 7" — 0.

(e) Calculate the magnetic susceptibility in zero magnetic field using the fluctuation-dissipation
relation of the form

N/2
) _ 1 |
N - kBT Aiz FO]a (2)
j=—N/2

in the thermodynamic limit, N — oo. For simplicity we assume N to be even. Note that
X(T) is defined to be extensive, such that we obtain the intensive quantity by normalization
with V.

(f) Approximate 1/x(T") up to first order in 23.J in the high-temperature limit (8 — 0). Use
this result to calculate the Weiss temperature O, which is defined by 1/x(Ow) = 0.
Solution.

(a) We can split off the last spin in the Hamiltonian as follows:

N-1

Hyy1 = —J Z 0i0it1 — JONON41 (S.1)
i=1

=HnN —JonON11- (S.2)

Notice that Hx now describes an identical system with one less spin, i.e. spin N is now the last on the
chain. The Hamiltonian H x no longer depends on on+1, and we therefore write the partition function as:

ZNt1 = Z [e_[mN Z eﬁJ"N"N“] (S.3)

{os=+1} oNp1==1
= Z o PHN (2 cosh (ﬁJaN)) (S.4)
{o;=%1}



We can now repeat® splitting off the last spin o to obtain

ZNy1 = Z e PHN—1 Z efIoN-1on (2 cosh (/J’JJN)) (S.7)

{oj==+1} on==%1
_ —BHN- B ‘
(2coshﬂJ) {021} |:e N-1 (2 cosh (BJUN 1)):| , (S.8)

where we have used the fact that cosh(z) is an even function. Continuing this sum, one finds

ZN41 = (QCOShBJ)N_2 Z efloro2 (2 cosh(ﬂjag)) (S.9)
o1,00=%1
N-1
= (2 cosh ﬁ]) J;l (2 cosh(BJUl)) (S.10)
N
= 2(2 cosh 5,]) (S.11)

The same result can be obtained by mapping the problem to a non-interacting Ising paramagnet. The
quantity S; = ;041 might be viewed as a new pseudo-spin for which the Hamiltonian reads

N
H=-J> S (S.12)
=1

The partition sum of the system of N pseudo-spins (instead of N + 1 reals spins o) is
Z = (2cosh )N (S.13)

The additional factor 2 appearing in Egs. (S.6) and (S.11) comes from the fact that the mapping from from
the spin system to pseudo-spins is not unique but two-fold; inverting all real spins ; — —o; produced the
same state in pseudo-spin space.

(b) The energy, entropy and response functions follow directly from the partition function Zny1 as follows:
The free energy is given by

F = —kpTIn(Zns1) = —ksT(N +1)In(2) — NksT'ln [cosh(ﬁ.])],

from which we can compute the entropy as

§=— <gi;> — kn [(N +1)In(2) + NIn [cosh(m)} - NﬁJtanh(BJ)] .

Next, the internal energy can be found via

o)
U= ~a5 In(Zn+1)

= —N% In [cosh(BJ)}
= —NJtanh(8J).
Then the heat capacity can be found through computing

0S8 O*F
C=Tor = Tom=

! Alternatively, notice that the term onyony1 is always equal to %1, independent of the value of on. Hence it
will always evaluate to 2 cosh(8J). This means we get:

ZN41 = Z exp(—BHn)2cosh J (S.5)
{o;==%1}
=Zn
= Z>(2cosh )N~ = 2(2cosh ). (S.6)

In the last line we used that Z, = > exp(8Jo102) = 4coshSJ.

{o1,02}



or aU
©= (37) '

2
¢ kD
cosh”(8J)
The heat capacity (see figure 1) shows no dependence on the sign of J, and is therefore identical for either

a ferromagnet (J < 0) or an antiferromagnet (J > 0).

Both evaluate to

C/(Nkg)

0.4}
0.3}
0.2F

0.1+

I S S T s kTJ
10 BT/

Figure 1: Heat capacity of the Ising chain.

Comparing the results to the ideal paramagnet (see script or exercise set 6), one sees that if we there is
an exact correspondence if we let J = Hm (where H is the external field, and m is the magnetization of
the paramagnet). Based on the mapping of this model to a non-interacting Ising paramagnet mentioned
in part a), this was to be expected. Conversely, one may realize the possibility of this mapping given these
identical results.

The magnetization density can be computed in a similar way:

(o) = 1 Z Z 0j exp (ﬂJ;mUi.H)

Z
NAL o i1y onpr=%1

N+41—j =
= (2eoshBN) T S~ S gexp <BJ§ aww)
k=1

ZN+1 o1=%1 oj==%1

N+41—j Jj—2
_ (2coshpJg)" S ew (ﬁjzawkH) S gy i1
k=1

Z
N+l o1=%1 oj_1==%1 oj=t1

oj—1(2sinh 8J)

N+1—j - j—2
_ (Qcoshﬁj) ~ (251Hh,8J) Z Z oy eXp(ﬂJo‘lo'Q) —o.
N+1 o1=+109==%1

=0
This result can easily be interpreted in terms of symmetry. The Hamiltonian (1) on the exercise sheet is
invariant under time-reversal, i.e. o; — —o;, Vi € {1,..., N+1}. Therefore, a finite magnetization, which
breaks time-reversal invariance, cannot be found by means of analyzing the partition function (a weighted
sum over all states respecting the symmetries of the system).

One could also have obtained this result by considering only the terms involved with spin o;.

Due to a vanishing magnetization (o;) = 0, the spin correlation function simplifies to T';; = (o;0;). We
assume j > ¢. We will use a trick, namely to assume bond-dependent exchange constants Ji. In the end
of the calculation Ji will be set to J. A generalization of a) leads to

N

Zni1 =2 ] [(2cosh BJx), (S.14)

k=1



while, using the property o = 1, the correlation function reads
1

(0ioj) =

Z
N o=ty
1 1 8j7iZN+1
ZN+1 iji 8J1 . OJj_l

(O'io'i+1)(0'i+10'i+2) . (O'j_10'j) exp (Z ﬂJlo'lO'l+1) (815)
!

= (tanh BJ) = 717 711/¢ (S.16)
Jp=J

where the correlation length is

&= —[log(tamhﬁ])]f1 > 0.
In the limit " — 0, £ diverges. This is an universal feature of systems undergoing a continuous phase
transition.

(e) Using the result of d) we find

oo oo

> ooos) = Y (tanh B = % = exp(28J). (S.17)

j=—00 j=—oc0

For the magnetic susceptibility at zero field we therefore find

e27/kBT
kT

which in the ferromagnetic case (J > 0) diverges for T — 0 indicating that at low temperatures only an
infinitesimal field is needed to produce saturation magnetization.

N/(kpx)

x(T)=N (S.18)

‘\HH\HH\HH\HH\TG
. p /Ow

Figure 2: Inverse susceptibility (continuous line) with high-temperature extrapolation for the Weiss temperature
(dashed line) for ferromagnetic coupling, J > 0 (blue), and antiferromagnetic coupling, J < 0 (red).

(f) Using the result from part (e), we write

1 _ kBT e_QﬁJ

L=t (S.19)
="l - 200+ 0 (C80))] (520

ks 2J
%N< kB) (S.21)

~—

0w

The Weiss temperature ©w = 2J/kg can be found by extrapolating the inverse susceptibility to low
temperatures and finding the intersection with the temperature axis. It provides a possibility to determine
the sign and the magnitude of the coupling J between neighboring spins. Refer to section 4.1.3 in the
lecture notes for further details.

The full solution as well as the linear high-temperature approximation with an extrapolation for the Weiss
temperature are shown in figure 2.
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Exercise 1. Ising Model: Variational Approach vs. Mean Field.

Consider an Ising lattice in d dimensions, where each of the N spins takes values s; = +s and
has z nearest neighbors. In the presence of an external magnetic field H, the Hamiltonian is

H:—JZSiSj—ZSZ’H. (1)
(si,55)

Let us also define the average magnetization of a spin as sm = M/N =s(Ny — N_) /N.

(a) Calculate the configurational entropy of the system (or remember that we already did that
in Exercise Sheet 1). Determine the internal energy by taking the average value of the
Hamiltonian, by making the approximation that each of the spins s; independently takes
the value +1 with probability wy = % (1 £m). Write your answers in terms of m.

Hint. If s; and s are independent, their expectation factorizes: (s;s;) = (s;)(s;).

Solution. We calculated in Exercise Sheet 1 the entropy of the system by counting its possible configu-
rations. In terms of n = N4 — N_, the entropy is given by

1 n n n n
S(n) = 5 Nks 22— (1+ N) In (1+ N) -(1- N) In (1- N)] , (S.1)
and with the average magnetization per spin,
S(m) = %NkB 2102 — (1 4+ ) In (1 + i) — (1 — i) In (1 — )] (S.2)

Now, each spin is +s with probability w+, such that

(si) =(=98) - w-+s-wy =s(wy —w_) =sm . (S.3)

We thus have for the internal energy,

N
U=-J Z(sisﬁ —HY (siy=—J Z<si><sj> ~HY (si) = —JTZS%F — HNsin , (S.4)
(4,4) (4,4)
where the number of bonds are calculated as z bonds per particle, NV times, and correcting for the double
counting of each bond by dividing by 2.

(b) Determine the free energy of the system using the formula FF = U — T'S. Which vari-
ational principle determines the magnetization of the system? Derive the corresponding
equation. Compare with (5.21) in the lecture notes, which was obtained with the mean
field approximation.

Solution. The free energy is simply
Fim)=U-TS

= —J%Sz’ﬁ”f — HNsm — %NkBT 2In2 — (1+m)In(1+m)— (1 —m)In(1—m)] (S.5)

Two find the magnetization that the system will spontaneously adopt, we have to minimize the free energy.
Differentiation by m gives

0L gﬁ; — _JNzs*m— HNs — %NchT (= (In(1 4+ 7) + 1) — (= In(1 — 1) — 1)]
— _JNzs*— HNs + - NkpTln -2
2 1—-m



thus obtaining

1+m

Jzs*im + Hs = %kBTln T (S.6)
which can be expressed in terms of the effective magnetic field heg = Jzsm + H as
S het 1. 1+m
=—1In — .
kT 2 1-m
‘We can reorder this equation as
1+ m = exp [28shes] (1 — M)
thus
m (1 + eQﬁSheff) _ BQ/BSheff -1,
from which we deduce
4+ H
m = tanh [Bshes] = tanh Jesm + Hs (S.7)
kT

Equation (S.7) is exactly the same as the one obtained in the mean field approximation, cf. (5.21) in the
lecture notes.

Exercise 2. Ising Model: Infinite-Range Forces and Mean Field.

Consider an Ising model where now all spins interact between each other with the same strength
J =1/N (long-range forces). The Hamiltonian is given by

1
H:—m;sisk—ﬂz,ﬁ. (2)

The coupling constant is rescaled by N so that the total energy remains finite; also the factor
one-half compensates the fact that in the sum, each index ¢ and k£ ranges independently from 1
to IV, and thus we counted each bond twice.

In this exercise, we’ll show that the mean-field approach for this model is exact (at least for
N — o).

(a) In order to calculate the partition function for this model, we will introduce a little math-
ematical trick. Show that the Boltzmann factor which appears in the partition function
can be written as

00 2
e_m‘:\/];rf/_ dX exp (Ng)\ +Zﬂ()\+H)Si> . (3)

This is a particular case of the Gaussian transform method which will be seen in the
lecture.

ax2

Hint.  You should know the Gaussian integral by heart by now, but just in case: /dx e " = il
a



Solution. To show that the Boltzmann term can be written as in Equation (3), one can first complete
the square in the exponent (introducing M =3 s;),

Nm +ZB A+ H)s :_M—kﬂ)\M—&—BHMf—M {A ——A—M}
N
NS M\* M® 2HM|_ N M\?  BM?
__2[(/\_N) _NQ_N] > MW ) TNy tAEM
NS M\?
—*T(A*W) —oH
where we have used that
M2
H=—oy —HM.

This allows us to compute the Gaussian integral in (3) as

\/g/d)\exp (—Ng)\Q—s—Zﬁ()\—&—H)s,)
\/7/d)\e p<— (/\_7) >exp( BH) = \/7\/2»’;3&5”:53”.

(b) Show that the partition function can be written as

2
7 \/];»f/d)\e—NﬂA()\) ’ AN = % — éln(Qcosh [B(A+ H))) (4)

Solution. Let’s calculate the partition function:
_ NG N2
_ BH _ )
7 = Z e —Z\/%/d)\exp{— 5 +Zﬂ(>\+H)sz
configurations 2
NS N
=4/ d
2w / ¢

We recognize the last sum as the partition function of an Ising paramagnet with noninteracting spins in a

(S.8)

magnetic field A + H. As a reminder:

N
I M I C < > eﬁ<*+H>s> ~ (2cosh [ (A + )"

{si} ¢ s=+1

so that we eventually get from (S.8),

(S.8) = \/g /

where we now have defined

(2cosh [B (A + H)]) 1/ /dA —NBAR)
AQ

AN =5 - B In (2 cosh [8 (A + H))) .

In order to determine the partition function, we will use the steepest descent method (a.k.a.
Laplace method or saddle point approximation): the integral of the exponential is dominated
by the maximum of the function in the exponential. Technically this is done by expanding the
function in the exponent to second order at its maximum, and neglecting further orders.



(¢) Determine the equation that A\ should satisfy in order for it to be the maximum of the
argument of the exponential.

Show that the partition function can be written (for large N) as

]' "
Z e VBT f:A(/\o)erlnA (Ao) = A(Xo) (5)

where f is the free energy per spin and Ag is the minimum of the function A (\).

Show that \g is precisely the average magnetization of a spin, A\g = (s;) =: m. Deduce that
your result coincides with the magnetization that you would get via mean field theory.

0
Hint. The average magnetization per spin can be obtained via the free energy per spin, m = 7871{1'

Solution. In order to apply Laplace’s method to the calculation of the partition function (4), we first
need to determine the maximum of the argument of the exponential in the integral. This corresponds to
finding the minimum of the function A (). The condition of the minimum is

0A

Differentiating the expression of A (\) given by (4),
rgy._ 04 1 1 . oy
A" () =y {B—2cosh[6()\+H)] ><251nh[5(/\+H)]><ﬁ}—)\ tanh [ (A + H))] .

Thus the minimum condition (S.9) for A (\) is simply

A = tanh [3 (A + H)] . (S.10)

We can now apply Laplace’s method to approximate the partition function, by expanding the argument of
the exponential to second order and neglecting further orders. Of course the first order is zero because the
expansion is done at a stationary point. Let Ag be the minimum, satisfying Eq. (S.10).

Z= \/7/d)\ —NBA0)— L A" (Ao)(A=20)? _ \/7 —NBA(Xo) e~ VBAM0) _ N
Wi (o)~ VA7 () :

where the free energy per spin f = F/N is given by

f:A()\o)*ml nA” (M) = A(Xo) .

Now the magnetization is given by

of oA _oAox, oA S
T OH OH OXNOH  OH’ ’

recalling that Ao also depends on H, but that 6—‘:\1 vanishes at its minimum, killing the second term in the
expression above. Differentiating A (\) in (4) by H,

0A 1 1 .
30 = _Bm x 2sinh [ (A+ H)] x 8 = —tanh [8 (A + H)] ,

which, at A = A, is in virtue of Eq. (S.10) simply

0A
—| =—tanh[8 (Ao + H)]=—Xo .
oH |, anh [8 (Ao + H)] 0
This now means that the magnetization is

m=(S.11) = — g% —o. (S.12)
Ao

Thus, the magnetization m obeys

m = tanh [8(m + H)| , (S.13)



which is exactly the condition that mean field theory predicts. Indeed, mean field theory yields Equa-
tion (5.21) in the lecture notes, which for J =1/N and z = N gives exactly (S.13).

Note: when applying the Laplace method to calculate the partition function, the Ao must be the global
minimum of the function A(N). In general, the function will have one or two local minima, and if H #
0, one will be lower than the other (see Figure below). If the two are the same, the error done in the
approximation for one of the minima is a factor 2, which is a constant in the free energy.

A plot of A(N):

The zeros of A () can rather easily be found geometrically as the intersection of the lines y = A and
y = tanh [8 (A + H)]:

2+
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Exercise 1. Condensation and crystallization in the lattice gas model.

The lattice gas model is obtained by dividing the volume V into microscopic cells which are
assumed to be small such that they contain at most one gas molecule. The result is a square
lattice in two dimensions and a cubic lattice in three dimensions. We neglect the kinetic energy
of a molecule and assume that only nearest neighbors interact. The total energy is given by

H=-\ Z nin; (1)
)
where the sum runs over nearest-neighbor pairs and \ is the nearest-neighbor coupling. There
is at most one particle in each cell (n; = 0 or 1). This model is a simplification of hard-core
potentials, like the Lennard-Jones potential, characterized by an attractive interaction and a
very short-range repulsive interaction that prevents particles from overlapping.

In order to study the case of a repulsive interaction, A < 0, we divide the lattice into two
alternating sublattices A and B. For square or cubic lattices, we find that all lattice sites A only
have points in B as their nearest neighbors.

) N
N ) N
r Y r
N N
r
) N
Y r r
N N N
r' YN [ r
N N /
Y
N
Y r

Figure 1: Schematic view of the lattice gas model.

(a) First, show the equivalence of the grand canonical ensemble of the lattice gas model with
the canonical ensemble of an Ising model in a magnetic field.

Solution. We consider the grand canonical Hamiltonian

H—,uN:—/\anj—uZni. (S.1)
(i:3) i
By introducing Ising spins s; through the relation
1
n; = 5(14—51'), Si ::tl, (82)
we arrive at an Ising model
_ e (o2 o —(h-2
H—MN——JZSZSJ hY s (h 2J)NL_HI (h 2J)NL (S.3)
(i:3) i
with N N
-2 APV o
J—4, h 47+2. (S.4)

Here, v denotes the coordination number (number of nearest neighbors) and Ny, is the total number of
lattice sites. The grand partition function Z = Tr[exp[—S(H — uN)]] of the lattice gas is thus related to
the canonical partition function Z1 = Tr [exp(—BH1)] of the Ising model through

Ze = 71 P (37HE) M (S.5)

with the relations (S.4) for the exchange coupling J and the magnetic field h.



(b) Introduce two mean-field parameters ma and mp and adapt the mean-field solution of the
Ising model discussed in Sec. 5.2 of the lecture notes for these two parameters. What are
the self-consistency conditions for ma and mg?

Solution. The Hamiltonian of the Ising model is
HI = _stisj —thi. (86)
(3,9) i
We introduce the mean-field parameters ma and mg, which are defined as
ma = (Si)iea mp = (8j)jeB - (S.7)
Now we can write for i € A
si =ma +0; :=ma + (si —ma), (S.8)
where we assume §; to be small. The case j € B is analog.
Now we can expand the Hamiltonian
H = —JZ(TTLA + (51)(771]3 + (53) — thi
(3,5) i
=—-J Z (mamp + msd; + mad; + 6:6;) — hz S
(4:3) i
~—J Z [mams + ms(si — ma) + ma(s; — ms)] — hz Si
(4,5) g

g Jmamp — ')/JZmBs,- - 'yJZmAsj - thi

i€A j€B i
_ N Jmams — Z(’meB + h)s; — Z(meA + h)s;
2 ~ ~ J
i J

where we used that nearest neighbors always belong to different sublattices and neglected the product §;9;.
We find that the two sublattices A and B behave as paramagnets in the effective fields

hix =~yJms +h,  hp =~Jma +h. (S.10)

The partition function of a paramagnet was already discussed previously, so the partition function of this
mean-field Hamiltonian is

71 = exp [—% B'yNJmAmB] . [2 cosh (Bhﬁg)] 2 . [2 cosh (Bhfﬁ)} N . (S.11)
This immediately leads to the Helmholtz free energy
Fi(B,h,N) = % (JymAmB - % {log [2 cosh(ﬁhﬁﬂ)] + log [2 cosh(,Bh?g)] }) . (S.12)

The self-consistent solutions are given by the local minima of the free energy. The conditions are therefore

oF _ A
a 0 & mp=tanh [Bheff] (S.13a)
oFr _ _ B
G =0 & ma = tanh [ﬂheﬂ] . (S.13b)

(c) Use your results from parts (a) and (b) to calculate the grand potential for the lattice gas
and determine the self-consistency relations for the two mean-field parameters py = (n;)ieca

and p = (n;);eB-



Solution. We use the mean-field approximation (S.12) derived in part (b) and the relations (S.4) in order
to write the grand potential

Q(ﬁ“u’ NL) = _% lOgZG = FI(ﬁ7h7NL) - (g’Y‘F %) NL
N A by
=3 {— (% + u) + %(QpA —1)(2p8 — 1) (S.14)

7% {log {2 cosh (g (AMypa + u))] + log {2 cosh (g (AMypB + u))] H ;

where we used the relation p = (1 +m). Here, the effective magnetic fields (S.10) are replaced by
hi" = $(Mpsa + 1) - (S.15)

We can now reformulate the self-consistency equations (S.13) for the lattice gas by inserting the rela-
tions (S.15). Using artanhz = £ log[(1 + )/(1 — z)] for & € [~1, 1], we obtain the two relations

1 PA PB

1
==-1lo - A =—1lo - A , S.16
n=glog— = Mps = glog i — Apa (5.16)
which can also be written in the form
I S.17
pa = 1+ e BAypp+p) ’ (5.172)
1
PB = T o ACmath) (8.17b)

By inserting Eq. (S.17b) into Eq. (S.17a), we obtain the single condition

P {1 e (_ﬁ [1 + exp (*g(AvApA ) M] )} B (3.18)

In the following we will use the mean-field solution of the lattice gas model in order to discuss
the liquid-gas transition for an attractive interaction A > 0.

(d) Argue, why in this case the mean-field results can be simplified as the two densities must be
equal, pao = pg = p. Use your knowledge of the Ising model to define a critical temperature
T., below which there are multiple solutions to the self-consistency equations, and discuss
the solutions of p for temperatures above or below T.. Define also the critical chemical
potential pg corresponding to h = 0 in the Ising model and use this for a distinction of
cases.

Solution. The two self-consistency equations (S.17) are of the mathematical form

a = ¢(b) b= ¢(a), (S.19)
where the function is given by

¢(x) = m~ (S.20)

It is easy to see that for A > 0 this function is monotonically increasing, while it is decreasing for A < 0.

Now if we assume b > a, this implies f(b) > f(a). This immediately leads to a contradiction, as a =
f(b) > f(a) = b > a. The same contradiction follows for b < a. Therefore, for A > 0 there are only
symmetric solutions pa = pp for the self-consistency equations and we can simplify the whole treatment
by just omitting the second mean-field parameter altogether.

From Eq. (S.4) we see that h = 0 corresponds to pt = —\y/2 =: po. For this case we can use the knowledge
about the magnetic transition in the zero-field Ising model. In particular, there is a critical temperature
ksTc = yYA/4 = —po/2 below which there exist two degenerate solutions.
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Figure 2: The density p as a function of temperature T for different values of the chemical potential p.

In the lattice gas, these solutions correspond to the liquid and to the gaseous phase and we will denote
them by p;(T) and py(T'), respectively (see Fig. 2). The third solution of Eq. (S.17) for g = po, namely
p =1/2, is only stable above Tt.

In the general case, there is a unique solution of Eq. (S.17) for T" > T, while for T < T, there are
three solutions in the neighborhood of 4 = po = —2kg7. but only one minimizes 2 (see Figs. 2 and 3).
The solution with dp/du > 0 is stable or metastable while the solution with dp/du < 0 is unstable and
corresponds to a local maximum of the grand potential 2. Thus, for T' < T, the density p(T, u) jumps at
uo reflecting the first-order liquid-gas transition (see Fig. 3).

(e) Find the equation of state p = p(T', p) or p = p(T,v) and discuss the liquid-gas transition
in the p — v diagram. Thereby, v = 1/p is the specific volume. Compare with the van der

Waals equation of state:
(4 %) (2-5) =t
v

Hint. For the lattice gas, the volume is given by the total number of lattice sites, Ny,.

Solution. The pressure is given by

P, 1) = = 5B, 0, )

(o e[ (e p)))

where we used Eq. (S.14). For p(8, 1) < pg(B) and p(B, 1) > pi(B) we can simply insert Eq. (S.16) into
the above equation and obtain
Ay

1
p(T,p) = *?PZ 3 log(1 - p) (5.22)
or in terms of the specific volume v =1/p
Ay 1 1
p(T,v) = 52 kT log(1l — 5) (S.23)

But for pg(8) < p(B, 1) < pi(B) there is coexistence of the liquid and the gas. We have to set p = po and
p = pg(T) in Eq. (S.21) (this corresponds to the Maxwell construction) leading to a constant pressure!
This is shown in the p — v diagram Fig. 4.
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Figure 3: The density p as function of the chemical potential p for different temperatures. For T' < Tt there is a
jump in p at p = po = —2kp7Te.

We can rewrite the van der Waals equation of state as follows:

a 1
T,v) =—— +ksT =
p( ,’U) UQ+ B B’

v —

The elementary volume of the gas (hard core volume) b equals 1 in our model. Comparing this with
Eq. (S.23), we see that the first term is identical (where a = Avy/2), whereas the second term diverges
either linearly (van der Walls) or logarithmically (our model) with v — 1. This different behavior is
present in the limiting case of high density and can be attributed to the short-range difference of the
potential for the discrete lattice gas model and the continuous van der Waals gas.

Find the phase diagram (T — p diagram). Determine the phase boundary (T, p.(T")) and,
in particular, compute the critical point (Tt, p.(1c)).
Solution. The critical pressure is given by Eq. (S.22) for u = po = —2kgT: and p = pg,(T)

pe(T) = —2kpTepy 1 (T) — ke T log(1 — peu(T)), (S.24)

as shown in Fig. 5. In particular, for T' = T, we have pg,;(T:) = 1/2 and

_ keTe

pe(Te) 5

(log4 —1). (S.25)

Instead of the liquid-gas transition, which we have observed for an attractive interaction A > 0,
a crystallization transition (sublimation) can be observed for nearest-neighbor repulsion, A < 0.
In this case, we will find that the two mean-field parameters are different, pa # pp, below some
critical temperature T¢.

(2)

Discuss the solutions above and below the critical temperature for A < 0. Plot the den-
sities pa and pp, as well as the average, (pa + pp)/2 for both attractive and repulsive
nearest-neighbor interaction at low temperature, T' < T.. Interpret the result in terms of
compressibility.
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Figure 4: The isotherms p(7,v). The shaded region denotes the region of liquid-gas phase coexistence.
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Figure 5: p-T phase diagram of the lattice gas model. The two phases coexist when p = po and T' < Tt
(equilibrium line). Above T, there is only one phase (a single density for a given pressure).

Solution. Below the same critical temperature kgTc = y|A|/4 as for an attractive interaction and in a
certain range p € [po — Ap, o + Ap] around po = yA/2, we find three different solutions for the self-
consistency relations (S.17). There are two degenerate asymmetric solutions pa # ps, which are related
by pa — pB, pB — pa, and one symmetric solution pa = ps.

The range is defined by the condition
&' (P)o(or=p < —1 (S.26)
where ¢(p) is the function in the self-consistency equations defined in Eq. (S.20). This can be understood

by looking at the plot of ¢(pa) and ¢(pg) shown in Fig. 6. As ¢(p) > 0, there have to be two asymmetric
solutions whenever ¢'(p) < 1 at the symmetric solution. By inserting ¢ into Eq. (S.26) and solving for u,

one obtains
2 1 1+0 _ 4
A,u——z 6+ﬂlog(—1_0 , 0—1/1+—67>\. (S.27)

The asymmetric solutions, which are generally lower in energy, correspond to a crystal structure, where
(at T'=0) one of the sublattices is occupied while the other one is empty.

The densities for attraction and repulsion are shown in Fig. 7. While for a nearest-neighbor attraction the
densities of the sublattices are identical, there is a symmetry-broken phase for nearest-neighbor repulsion.

The compressibility can be written as
RT = — (828)
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Figure 6: Plot of ¢(pa) and ¢(ps) for u € [po — Au, o + Ap]. The two graphs cross at the symmetric solution
in a way that there must be two additional crossings. The condition is given in Eq. (S.26).
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Figure 7: Densities on the two sublattices for attractive (A > 0) and repulsive (A < 0) nearest-neighbor interaction
at T'= 0.57.. The thick lines show the average densities, the dashed and dotted lines the densities of the two
sublattices.

see Sec. 1.5.2 in the lecture notes. The crystallization transition for A < 0 is of second order (except at
T = 0, where it is of first order). For the average density, which is related to the total particle number,
there exists a plateau around po. On this plateau the compressibility is small (k7 = 0 for 7' = 0), see
Fig. 8. This indicates that it costs a lot of energy to add additional particles, as one sublattice is almost
completely filled (so no additional particles fit in) while it is very difficult to add particles to the second
sublattice due to the repulsive interaction.

The liquid-gas transition for A > 0 is of first order. Therefore, there is a jump in the density (see Fig. 7)
which is related to a diverging compressibility. The compressibility in the liquid phase is strongly reduced
compared to the gaseous phase.

For both transitions, the compressibility vanishes for large chemical potentials, where the lattice is almost
completely filled. In contrast, at low chemical potentials, the lattice is almost empty and the compressibility
is large due to the factor p=2 in Eq. (S.28).
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Figure 8: Compressibility for a nearest-neighbor repulsion A < 0 at T' = 0.2 T¢ (left) and for a nearest-neighbor
attraction at T = 0.57c (right). The second-order phase transitions for the crystallization are clearly visible
as jumps in the compressibility. Around po there is a range where k7 ~ 0, indicating the crystallization. The
diverging compressibility at the condensation for A > 0 is not shown in the plot. However, the compressibility is
decreased by a factor of 100 at the transition from gas to liquid.
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Exercise 1. Magnetic domain wall.

We want to calculate the energy of a magnetic domain wall in the framework of the Ginzburg-
Landau (GL) theory. Assuming translational symmetry in the (y, z)-plane, the GL functional
in zero field reads

(a)

A B K
Flm,m'] = Fy + /da: {Qm(x)2 + Zm(x)4 + 2[m’(x)]2} . (1)
Solve the GL equation with boundary conditions
m(x — +o00) = +mgy, m'(x — +o0) =0, (2)
where mg is the magnetization of the uniform solution.
Solution. The Euler-Lagrange equation of the GL functional is
_GF _9f d0f _ S
0= S om  dw o Am + Bm” — km’. (S.1)
Assuming A < 0 and B > 0 the uniform solution is
A

By introducing rescaled variables s = z/£ and u(s) = m(s€)/mo, where

K
=ya
is the correlation length, we arrive at the equation
u(s) —u(s)® +u’(s) = 0. (S-3)

Multiplying the above equation by u’ and integrating from —oco to s we obtain

1

u'(s)? = 3 [1- u(s)2]2
where we have used u(—oo) = —1 and u'(—o0) = 0. The correct solution for «’ is the positive root,

u'(s) = = [1- u(s)2]

V2
which can be integrated to give
s — S0 T — o
u(s) = tanh { ] = m(z) = motanh [ } . (S.4)
V2 V2¢

Without loss of generality we set o = so€ = 0 in the following.

First, find the energy of the uniformly polarized solution (no domain walls). Next, compute
the energy of the solution with a domain wall compared to the uniform solution. Use the
coefficients A, B and k according to the expansion of the mean-field free energy of the
Ising model (see Egs. (5.78) and (5.83)). Finally, find the energy of a sharp step in the
magnetization and compare it to the above results.



Solution. The free energy density of the uniformly polarized solution is f, = fo + Am3 /4.

The energy of the domain wall as compared to the uniform solution is therefore

AF

/dw {gm(x)Q + gm(x)‘* T S @) - ?mé}

= /dm {M [Am(z:) + gm(a:)?’ - /{m"(x)] - ?mg}

2
= /&%—gm@f %mﬂ
- fulng

In the second line we have used integration by parts and in the third line we have used the GL equation.
Changing to the integration variable t = z/(1/2€) yields

2
Amo

AF = -2

Ve / dt [1 — (tanht)*] (S.5)

and by using tanh’ z = 1 — tanh? z we find

Am?
4

2
=— ATO V¢ / dt {(tanh t) + %(tanh?’ t)’

AF = —

\/ig/dt [1 — tanh® t(1 — tanh'¢)]

— A e (.6)

Using the expressions of Chapter 5 (see Egs. (5.78) and (5.83)) for the coefficients A, B and « (derived for

an Ising model with coarse graining), we find that

AF ~ Jm2y 1 — TZ S0 (T>T). (S.7)

c

In contrast, a sharp step in the magnetization from —mg to mo costs an energy
E~J m% , (8.8)

(see Chap. 5.6), which for T' — T, is less favorable.
1

Note that in the above energy discussions, the actual position of the domain wall (see entropy contribution
in Chap. 5.6) was not taken into account.

Exercise 2. Gaussian Fluctuations in the Ginzburg-Landau Model.

Consider the Ginzburg-Landau model of the d-dimensional Ising model in presence of a magnetic
field H(r), introduced in chapter 5.4 of the lecture notes. Here, we only consider temperatures
above the critical temperature 7.. In order to make the model exactly tractable, we assume

!Notice that (S.4) describes a sharp step in the magnetization if ¢ — 0. One might think then that (S.8)
contradicts the expression (S.6), as the latter goes to zero if £ — 0 while the former does not. However, one should
keep in mind that the continuum model considered here is derived from a discrete model by coarse-graining. In
particular, £ depends on the lattice spacing a and the reduced temperature 7 according to

a
X — .
é- ﬁ
The correlation length ¢ is thus always greater than a and can not be zero. The continuum limit keeps the
information about the discreteness of the original model. A sharp step in the discrete case corresponds to a step
of width a. At zero temperature, when the system is freezed and ¢ = a, both expressions (S.8) and (S.7) agree.



that quartic fluctuations are negligible and ignore them. Therefore, the free energy functional
for a given magnetization m and temperature 7" in d dimensions is given by

F(T,m,H) = /ddr {%Am(rﬁ — H(r)m(r) + %ﬁ[vm(r)f} : (3)

where A = ar, with 7 = (T' — T,)/T.. For the calculations we assume our system to be a cube
of side length L with periodic boundary conditions on m.

(a)

Use the Fourier transform of the magnetization field,
1 .
m(r) = — g mged" | 4
( ) \/ﬁ . q ( )

and compute the energy functional F/(7, m) in the transformed coordinates {mgq}. Which
values of g are allowed in the sum and which values of g are independent? Note that m(r)
is real and interpret its implication on the myg .

The calculation of the canonical partition function,

2(T) = / Dm e~ FTm)/keT (5)
is rather involved. If you have time to spare, show that Z(T') is equal to
27 |Hgy|?
Z(T) = 2 6
ol =t (| )
q

by using Gaussian integration. Otherwise, proceed directly to point (c¢) using this result.

Hints.  Argue that the finite number of degrees of freedom (finite lattice spacing) of our Ising model
introduces a momentum cutoff A, which is crucial to requlate the otherwise ill-defined integrals (cf.
Debye wave vector for phonons).

Rewrite the functional measure Dm according to
Dm = H dmgdm_gq . (7)
q
Why do we use dmgdm_gq ?
You can also use the fact the measure Dm in Fourier space can be expressed as
Dm = dmg - H V2d(mi) V2d(m}), with mq = mg +imy (8)
qgeA*

where AT is a choice of half the set of allowed momenta q # 0, such that g € AT & —q ¢ AT.

Determine the free energy F(T') = —kpT log Z(T).

Compute the specific heat ¢y in the thermodynamic limit L — oo for vanishing external
field (H(r) = 0). Study its behavior for different dimensions d near the critical temperature
where 7 = 0. Compare the critical exponent of ¢ with the mean field result of section 5.4.2
of the lecture notes.

Derive an expression for the magnetic susceptibility, defined as the negative second deriva-
tive of the free energy with respect to the external field H in the limit of vanishing field,
i.e.

O*F(T)

X(T) = O |, 9)

What is the critical exponent of x? Compare the result with the mean field result of
section 5.2.2 of the lecture notes, Eq. (5.28).



Solution. Before we start with the solutions, we would like to stress that the form of the free energy, Eq. (1)

on the exercise sheet, is only valid for temperatures above the critical temperature T.. It corresponds to the

second order expansion of the Ginzburg-Landau free energy (including quartic terms) in the expectation value of

the magnetization (m) = 0. This is of course only true in the disordered phase, i.e. T' > T.. A similar expansion

up to second order in m is also possible in the phase with broken symmetry, but in that case the expansion is

performed around the non-vanishing expectation value (m) # 0 which minimizes the free energy.

(a)

(b%)

Periodic boundary conditions imply discretized momenta, i.e. g € %”Z 4. As a consequence of the unitarity
of the Fourier transform, we find that the interation over the absolute value of m equals the sum over the
absolute value of its Fourier transform (Parseval-theorem). Hence, we immediately find

1
F(T,m,H) = §Z(A+Hq2)|mq|2 + Fy | (S.9)
q

where Fi represents the coupling of m to the external field. The Fourier transform of H(r) is exactly the
same as for m(r) and, thus, we obtain for the linear contribution the following term:

1 d iqyr iqo-
Fu = - i drzzeqlreq?rmquq2

91 92

= — Z mqH_g
q

= " Malloa £ moally (S.10)
q

2

As a measurable value, the magnetization m(r) must be a real number and, hence, we find the condition
mg=m>g. (S.11)

This means that the set of independent coordinates for the magnetization field m is given by {Re mq, Im mgq}
and mo (condition (S.11) implies that mo is a real number), where g lies in a half-space which we call AT,
For A" any space can be chosen that fulfills the conditions

ge At & —q¢ AT for q#0 and 0¢ AT. (S.12)

By using the definition of the complex measure dz = d(Re z)d(Im z) we can define the functional measure
of the magnetization field D by introducing the variables m’ and m” for real and imaginary parts of m,

Dm = dmg - H V2d(my) V2d(my) with mgq = my +imy , (S.13)
qeAt

where the factors of v/2 in front of the real differential m; and m;' come from the Jacobian transformation
of the differentials, cf. discussion in the framed inset below. Keep in mind that the set of independent
variables is given by the mgq with ¢ € A" together with the real mg. Alternatively, one could formulate
the problem using complex Gaussian integration, but we will consider real variables here.

Now introduce the cutoff A and correspondingly interpret the half-space A" as the half-space of g-vectors
with |g| < A, so that Dm becomes a well-defined finite-dimensional integral. The introduction of the
cutoff A can be understood similar to the cutoff frequency within Debye theory of phonons and is a direct
consequence of the finite lattice spacing. A finite lattice spacing of (in our case) spins directly implies a
finite density of degrees of freedom, which means that the integral over the density of states must equal
the number of degrees of freedom. This requires the introduction of a cutoff A for the product over the
g-vectors. The integrals over the real respectivetly imaginary part of mg run from —oo to oco.

Z(T):/dmo I /\/idm;ﬁdm;’

qe At

X exp 75 > Xqlmal® = (Hgm—q + H-_gmq) (S.14)

lgl<A



Here, we have defined Xq = X_q = (A + rkq®). Now we can use |mq|* = (mj)* + (mjy)? and find for the
partition sum

/dmo 11 /mm;ﬂdmg

qe At

X exp —g Z Xq (mg)® + Xq (mg)® — (Hq(m" g +im”q) + H_q(mg +1imyg)) ¢ . (S.15)

lgl<A

Since the summand is completely invariant with respect to ¢ — —q, we can replace the sum by twice a
sum with restriction to the half-space A" plus the contribution according to ¢ = 0. Then, we use the
condition (S.11), we obtain

11 / V3 dml, 3 dm!

qe At

xexpq =B Y Xq(mg) + Xq(mg)® — (He(m’q +im” ) + H-q(my +imy))

qe At

X/dmoe—g(xomg—zHomo)

( 1T /\/idm; ¢~ B(Xq (my)*~2(Re Hg) my) /\/idm;’ e~ B(Xq (mg)?—2(1m Hq>mi{))
gqEA+

X/dmoefg(X()mngH()'rng)

H /\/idmefﬁ(anff%f{e Hq)m) /\/idmefﬁ(xqmrz*Q(Im Hq)m)

qe At

X /dme_g(XOmZ_QHom) , (S.16)

where in the last equatlity we did nothing but a relabeling of the real integration variables. We are left
with three one-dimensional Gaussian integrals which we know explicitly how to integrate,

oo B b2
/ dy = Foute ,/g exp {E + c} . (S.17)

Therefore, noting that the condition (S.11) also holds in complete analogy to the magnetization for the
Fourier components Hq of the external field H(r), we arrive at

27 B(Re Hy)? 27 B(Im Hy)? o B HZ
H /BXq eXp{ Xq : } 8 ﬂXq eXp{ Xq : } 8 /BXO EXp{ 2Xo }

B o B|H,|? 2 BH;
=\ II /BquXp{ X, } 8 ﬁexp{ﬂo}

geAt

Hg|?
= H 62;(1 exp{ﬂ2|Xq| } , (S.18)

lgl<A

where in the last equality we have replaced every term in the product by a product of the square root of the
term and the square root of the term with g replaced by —g due to its invariance under this transformation.
This enabled us then to transform the product over all ¢ € AT into a product over all g including the
contribution ¢ = 0. Thus, the partition function is given by

_ 2rkpT |Hg|?
Z(T) = |q];[A Y exp{—QkBT(A_i_KqQ) . (S.19)



Fourier Transformation of the Functional Differential Dm
In this part of the exercise we have introduced a discretized momentum space representation of Dm,

Dm = dmo - H V2d(miy) V2d(miy) with mg = mg + imy . (S.13)
ge At

Here, we will briefly sketch how to derive the seemingly awkward factors of v/2 and how in principle such
a transformation is performed explicitly. Note that we will only sketch the whole procedure so there is no
claim made concerning mathematical exactness. For simplicity, we assume that our field m(r) is defined only
on a given set of vectors {r;}, defining a lattice in real space. This assumption is always a good consistency
check for any kind of low energy calculation in statistical physics. The continuum limit is the achieved by
smoothly taking the lattice spacing to zero. Here, we fix the lattice spacing a to one.

Starting with the discretized real space, the functional differential Dm is defined as
Dm = Hdm('ri) = Hdmi . (S.20)

The Fourier transformation from real space to momentum space then simply corresponds to a change of
variables from {m;} to the {mg,}, where the g, label the reciprocal lattice. First, as already discussed in
part b) above, the momentum space variables are related via the condition

mg, =mly , (S.11)

1

which reduces the independent variables in momentum space to the mq, with q, € AT (for the purpose of
this discussion, we will neglect the g, = 0 contribution, which is real by definition). In the discretized real
space picture, we are in the position to count the number of degrees of freedom in a simple way. In real space
we have exactly N, independent variables, where N, is the number of lattice sites. In momentum space we
have by definition of the Fourier transformation no loss of information, an consequently the same number of
independent variables N, which reduces the number of the independent complex mgq, to Ny = N,./2.

Now in order to explicitly perform the transformation from real space to momentum space we have to calculate
the Jacobian of this transformation. The Fourier transform of m; is defined as

m; = L™Y? Z e img, (S.21)
@

Consequently from Egs. (S.11) and (S.21), the matrix elements of the Jacobian are given by

3 1 — 7 . —1 . 2
7(91773 =L d/2(e Ui 4 o ‘nm) = Tz cos(q;rs) , (S.22)
q
om; R iqr; —iq;7; 2 .
S = ILTY2 (T Ty = ~ iz sin(q,r;) , (S.23)
q;

for the real and imaginary parts of mg, respectively. Therefore, switching from the real space differentials to
the m;l and mgl one has to multiply the entire product with the determinant of the Jacobian J,

202 cos(qri—1) 2L %2 cos(qr:) 2L %2 cos(qrit1)
—2L7%sin(qri—1)  —2L"Zsin(qri)  —2L"%Zsin(qri1)

, S.24
21,-9/? cos(qyy17i-1) 2L~ %2 cos(q;17i) 2142 cos(q,y17it1) ( :

—2L~4/? sin(q;,7i-1) —2L~4/? sin(q,,74) —2L~4/? sin(q;,7it1)

where [ =1,...,N;jand¢=1,...,N,.

The matrix J is a squar matrix of size N, (note that the number of g;-vectors equals half the number of lattice
sites ;. Due to special form with the trigonometric functions, the columns of J represent an orthogonal basis.




Hence, the Jacobian determinant is given by the product of the norms of the basis vectors V';, which can be
simply calculated.

Vill2

H ( 2L cos(qyri), —2L7 % sin(q,ri), 2L Y? cos(qy174), —21,~ %2 sin(quri))

2

2
Q
N

{ (QL_d/2 cos(qﬂ'i)>2 + (—QL_d/Q Sin(eri)>2}

I
I(~]

2
Q
Nl

Il
N
W~
h
L

[N

(4L’d x Nq) (S.25)

The number N, equals half the number N, which, for a cubic system, can be given in terms of the dimension
d, the system length L and the lattice spacing which we have fixed to one. Then, we find that there are
exactly L? lattice sites and consequently Ny = L /2, which renders the norm of each of the column vectors
V., of J to

Vil = V2. (S.26)
The determinant detJ is then given by
det J = (||Vi]|2)Nr/? = 2Nr/2 = oMo | (S.27)

and, therefore, every term dm;l dm;'l in the product over all N, g;-vectors acquires a factor of 2. Thus, we
finally have

Dm =dmo det] [ dmgdmy =dme2™ [ dmgdmy =dmo [ vV2dmg,vV2dmy, ,  (S.28)
q €At qeAt qeEAT

where we have re-included the zero-wavevector contribution mg.

(¢) From (S.19) we get the free energy of the system as

1 Hy?
F(T) = ~kpTlog Z(T) = — 5 knT > {log(kaBT) —log(A+ rg?) + m} : (S.29)
lal<A

First we note that the coefficient A is given by A = a(T — T¢)/T.. The internal energy for vanishing
external field is then given by

= k7?2 _ keT? (1 o/Te
U(T) = kpT* 55log Z(T) = = qud{T et (S.30)

Therefore the specific heat is given by

19U _ kpT? 1 (a/T.)? ur) .
VT Ligr T ard Z<A[W+(GT+Kq2)2 T2 = ATBROs (831
q
_ , (@/Te)* u(T)
A = constant ; B Z (ar +rq?2 C x T

lgl<A

In order to study the critical behavior of ¢y at the phase transition, not all the terms in Eq. (S.31) are
relevant. The term A gives a constant contribution which we ignore for the present analysis. The term B
becomes in the thermodynamic limit

kpT?(a/T.)? 4 1
T en T TR (552

The behaviour in the vicinity of the critical temperature 7 = 0 is therefore determined by the integral

A qd—l



(d)

Using the substitution s — |/->q we find that the specific heat behaves like

(d—a)/2 A(T) Sd71
T /0 ds m 5 (834)

where A(T) := Av/k/(aT) .

If d < 4, the integral above converges and we find
cv o T@H/2 (S.35)
If d = 4 the integral diverges logarithmically in 7 and we find
cy o logT . (S.36)
If d > 4 the integral diverges proportionally to 7~ (¢~%/2 5o that

cv x 1. (S.37)
Note that the term C is also divergent for d < 2, but it is less singular than term B (C diverges as 12
for d =1 and as log 7 for d = 2).
With the results (S.35) to (S.37) we can summarize: The specific heat cy of the d-dimensional Ising
model, derived within the Ginzburg-Landau theory at the mean field level including Gaussian fluctuations
is divergent in d < 4 and at the critical temperature 7. and shows a cusp in for all higher dimensions.
Considering the case of three spacial dimensions (d = 3), we find for the critical exponent of the specific
heat (which in literature is called «) a value of 1/2. Compared to the mean field result of @ = 0, we
conclude that Gaussian fluctuations strongly renormalize the temperature dependence of the specific heat.

We are interested in the response of the system to a homogeneous external magnetic field, meaning that
only the Fourier component with ¢ = 0 survives. Hence, from the form of the free energy, Eq. (S.29), we
can immediately read off the magnetic susceptibility,

1 -1

x(T) = T —To)/T. xXT T, (S.38)

from which we find that at the phase transition, the susceptibility diverges with the critical exponent of
v = 1. This susceptibility has the exact same form as the one calculated in the lecture notes within mean
field theory, Eq. (5.28). In other words, Gaussian fluctuations do not change the critical exponent of the
magnetic susceptibility and, thus, do not contain non-trivial information about the magnetic correlations
in the vicinity of the phase transition. The fact that Gaussian fluctuations do not qualitatively change
the susceptibility can be understood by considering the correlation functions as second derivative of the
free energy which is related to the curvature of the free energy around its minimum. In order to gain non-
trivial (beyond mean-field) information about correlation functions, one has to take into account higher
order terms such as the m* term which we neglected in this exercise (cf. Self-consistent field approzimation,
chapter 5.5 of the lecture notes).
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Exercise 1. The Bogolyubov transformation.

We consider a gas of weakly interacting bosonic particles at low temperatures. In this
limit, the corresponding Hamiltonian can be approximated by

H = U2ty {(ek — i+ 2Unp) (aL&k + aika_k) + Ung (azaik + aka_k) } ,

k0
(1)
where € is the free dispersion,
h2k?
€ —

(2)

o2m

(a) Introduce quasiparticle annihilation and creation operators 4, and ﬁ,t which are
defined by the relation

e = udy — oAy and Ay, = wd_y — o (3)

What is the condition for ug and vy, in order to obtain bosonic commutation relations
for these operators?

(b) For real-valued uy and vy, you can write the transformation coefficients as

1
up = ———= and vk:LQ. (4)
1 — x5 1—x;i
Determine the function yj such that the Hamiltonian is diagonal in the quasiparticle
operators,
H =By~ nQno+ 3> B (33 + 3 (5)
k#0

(c) Find the quasiparticle dispersion Ey. Fix the chemical potential & in such a way
that the energy spectrum is linear for k — 0. Approximate the dispersion for small
(k — 0) and large (e, > Ung) momenta and calculate the sound velocity for k& — 0.

Solution.

(a) We can reverse the problem and start from bosonic commutation relations for the quasiparticles,

s ] = ke and  [Fg, 3] = 9,401 = 0. (S.1)

We can use these to calculate the commutation relations for the original operators using the
relation (3):

s ] = [unie = oAl g A = i)

2. & 2[4 . % Ta A " “ .
= [u| [m%ﬂ] + v [Wikm,k} —uk (Vs Y_re] —UukVE [vikmﬁ] (5.2)
—_————— —
=1 =—1 =0 =0

= Jug|” — Ju|? .



As the original particles are bosons, we obtain the condition
2 2
uk|” — [oe]” = 1. (S.3)

It can be easily checked that all other commutation relations for a, and &Tk are fulfilled.

We write the Hamiltonian (1) as

M= 30Und — pQno + 5 (S.4)
k+#£0

and insert the definitions (3) to obtain
hi = (e — p+ 2Uno) KUZ% - UZ’AL;@) (Uk% - Uk:’?T_k) + (UZ@T_;Q - U/ﬁk) (Uk%k - Uk%t)}

+Ung {(UZ’VL - UZ’L:;) (UZ‘YT_k - UZ’AVk) + (Ulc% - Uk“?T_k) (uk’?_k - Uk“%i)} .
(S.5)

Using the commutation relations, in particular %'AY;L =1+ ’y,i’?k, and collecting terms, we obtain

hy = (%Tﬂk A A e+ 1) [(er — 11+ 2Uno) (Jukl® + |vil*) — Ung (ugvk, + urv)]

=FE

At a X X S.6
+ (’Y};’Yik) |:_2uk;'Uk (ek — U + QUTL()) + Un() (qu + 'Ukz)] ( )
+ (‘yk&_k) [f2ukvz (e — 1+ 2Ung) + Ung (uk2 + 022)} .
In order for this Hamiltonian to be diagonal, the condition
0 = —2ujvg (g — pn+2Ung) + (u’,;2 + vk2> Uny (S.7)
must be fulfilled. Here we insert the relations (4), which leads to
2Xk 1+ Xi
0=— € — pu+20Ung) + Ung . S.8
1-— X% ( ) 1— Xi (S.8)
The result of this quadratic equation is given by
(e — p+2Ung) — V(ex — p+20Ung)2 — (Ung)?
Xk = Ung
5 (S.9)
€ — [ € — [
=2 — 2 —1.
+ UTLO \/( + U’rlo )

w_»

Here we can just choose the sign, as the “+” would just correspond to exchanging ug <> vg.

In order to determine the dispersion Ey, we define
A
A==€, —pn+2Uny, B:=Uny, and Y:E. (S.10)

Using this definitions, we obtain

Xk=Y —-VY2-1, (S.11a)
—1=Y2—2V /Y2 —14Y2-2

=2(Y2—1)—2Y /Y2 -1 (S.11b)
:2\/Y2—1(\/Y2—1—Y) .




Also, the Eq. (S.8) can be written as

1+ x2 2
TNk _ oy Xk (S.12)
1—x3% 1—xz%

Now we can insert these results into Eq. (S.6) in order to calculate the dispersion relation

@_Yl‘i‘xi 2Xk

B T 1-x2 1-x2
2
1-— X2
k (S.13)

2V —1) (Y —VY2 1)
VYT 1(Y VY2 -1)
=VY2+1,

= Er=VA2-B?=\/é +ex(4Uno — 2p) + (p? — 4puUng + 3U>nd). (S.14)

The occupation of the different quasiparticle states follows the Bose-Einstein distribution

1

m . (S.15)

ne =

If the energy of the state k = 0 is finite, the occupation will converge to 0 as T — 0. So in order
to have a fixed finite particle number at arbitrarily low temperatures, we need to have Ex—g = 0,
which leads to a linear dispersion. The condition for this is a vanishing constant term in the
square-root. This fixes the chemical potential to

w € {Ung,3Ung}. (S.16)

For > Ung the discriminant becomes negative at either small or large momenta, such that we
have to choose 1 = Ung. In this case we obtain the dispersion

Er = \/Gi + 2Unp€y, . (817)

For k — 0, we can neglect the quadratic term and approximate the dispersion relation by

~ V/2Unoek = hky | =2 Uno (S.18)

The sound velocity is defined as
6Ek U?’LO

= =/ —. S.19
= (k) m (8-19)
For large momenta we can write
2
Er =e€pt/1+ i[nO €L (1 —+ U€n0> = € + U?’LO . (820)
k k



Exercise 2. Temperature dependence of the superfliuid fraction.

In the lecture we calculated the number of condensed (superfluid) particles at zero tem-
perature [Eq. (6.31)]. In this exercise we want to determine the temperature dependence
of this fraction in the limit 7" — 0.

(a)

(d)

Calculate the expectation value of the density of particles with momentum k,

M = é <aLak> . (6)

Hint. Use the fact that the Bogolyubov quasiparticles defined in Eq. (3) follow a Bose-
Einstein distribution.

Approximate the temperature dependence of this density,
Ing(T) :=ng(T) — k(T = 0), (7)
in the limit 7" — 0.

Calculate the temperature dependence of the density of condensed particles,
dng = — Z Ny (8)
k

in the same limit. What happens in a two-dimensional system?

Hint. Keep only the terms of lowest order in T.

Calculate the expectation value <d;fch_k>. What is the physical interpretation of
this quantity?

Solution.

(a)

The Bose-Einstein distribution for the Bogolyubov quasiparticles reads
1
~Ta N
<'ykfyk> = B 1 (5.21)
This allows us to easily calculate the particle number
Ong = <(uk’%i - Uk:)/—k:) (uk’?k - ’Uk’YT_k)>

= uf (536) + 08 (3oite) —wevn (Gudw) + (314L))
T
k

= uj, <ﬁ %> +j; <ﬂk%k + 1> (S.22)
1
T+xg 1 Xi

1—x3 eﬁE’e—l—'—l—X%'



(b)

At T = 0 the first term vanishes as  — oo and Ejy > 0, while the second term is independent
from temperature. Therefore the density difference is given by

1+xi 1

Qong = 71_)(% B 1

(S.23)

In the limit T — 0 we find 8 — oo such that the exponential e?F* is strongly peaked around
k = 0. Therefore we can approximate xg for £ — 0. There we obtain

h2k2 R2k2 >
=1 —/(1 -1
e * 2mUnyg ( * 2mUn0)

e _\/h2k2 +< B2k )2 (S.24)

2mUnyg mUnyg 2mUnyg
hk
vVmUng

This leads to an approximation of the temperature-independent part of dng:

~1-—

2hk K2 k>
1+Xi ~ 1+1-— vmUng Unom
_ 2 T 2nk h2k2
1 —xj 1-1+ e~ Unom (5.25)
2hk ’
- 2- vVmUng vmUng 1
~ 2hk - hk -

vmUng

For finite k, where SEy 2 1, we can approximate the Bose-Einstein distribution by the Boltzmann
distribution
1 ~ e PEk

)

where we use the linear approximation for the energy,

U
B~ | —2 hk =: hke, . (S.27)
m

Therefore, we obtain the approximation

O ony, ~ (TZ; - 1) o= Bhkes (S.28)

In three dimensions, the density of condensed particles is given by

ony = — E ong = — / i ong (S.29)
(2m)3 ' '
Here, we insert the approximation (S.28) and obtain

&3k /me
~ s 1) a—Bhkes
omo / o Ui~ 1)

- L /dk: (% B k2) e

272

(S.30)

_ 1 mces 2
T2 (h(ﬂh08)2 - (BFLCS)S)
T-0  mkg o

- 2m2h3c,

In two dimensions, a similar calculation would lead to a linear temperature-dependence,

ong o< 1. (S.31)



However, in this calculation we underestimated the contributions for very small k: For SF < 1
we can approximate the Bose-Einstein distribution by
1 1 1
PEx — 17 BE,  chk’

(S.32)

Due to the factor of k in the three-dimensional case, this contribution can be neglected. However,
in two dimensions, the integral for dngy diverges,

A%k mes 1 m dk
Qng ~ mes - _ BaiN S.33
o / 2n)? hk ik 2nnz) kO (5-33)

such that there exists no superfluid condensate at finite temperature.

(d) We can perform a similar calculation as in Eq. (S.22):

(afat o) = ((u = o) (uﬁ_k o))
— —ugn (<%nk> (voite)) + i (3T + 92 G

= T URUE < > (S.34)

Xk e’HE’c +1
1—x3 efBe —1
— Xk [tanh (18Ey)]

1-x3

-1

This quantity can be physically understood as the rate at which particles are exchanged with the
condensate.



