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1. Review 10 points

Let us start by reviewing some of the key concepts from the first statistical mechanics course.

a) What are the three laws of thermodynamics?

b) What is special about the entropy in thermodynamic equilibrium compared to all other
possible states of a system?

c) What is a thermodynamic phase transition and what is the difference between a first-
order and a continuous phase transition?

d) What is the relation between the entropy of a macroscopic state and the number of
microscopic states which correspond to the macroscopic state?

e) What is the probability distribution of the microcanonical ensemble? What physical
situation does it correspond to?

2. Harmonic oscillators 10 points

Let us consider an Einstein solid and look at it from a classical point of view. The Einstein
solid picture assumes that atom i of a solid sits at lattice position ~r0,i and can oscillate
harmonically around this position. It is described by the Hamiltonian

H =
N

∑

i=1

~p2

i

2m
+

1

2
mω2

N
∑

i=1

(~ri − ~r0,i)
2.

a) What shape does the phase space volume with energy less than E, i.e., the volume
H(~xN) ≤ E have?

b) Calculate the entropy S of the Einstein solid at a given energy E using classical theory.
When you evaluate the constant CN take into account, that the oscillators have different
origins and thus the atoms are distinguishable!

c) In what limit does your result coincide with the quantum mechanical result derived
in last quarter’s lecture? (You can find last quarter’s lecture on the Einstein solid at
http://cannoli.mps.ohio-state.edu/phy846/phy846-14.pdf)
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d) What would the entropy be, if we had a gas of N particles within the same harmonic
oscillator, i.e., if ~r0,i = 0 for all i. Is this entropy an extensive quantity? (Hint: You
have to use a different constant CN .)

3. A polymer on the lattice - microcanonical 10 points

To appreciate the differences between the microcanonical and the
canonical ensemble we want to solve one more problem in the
microcanonical ensemble. A simple model for a polymer in two
dimensions is that of a path on a square lattice. At every lattice
point the polymer can either go straight (option 1 in the figure)
or choose between the two directions in a right angle with respect
to its current direction (options 2 and 3 in the figure.) Each time
it bends in a right angle, it pays a bending energy ǫ. Thus, for
a given “shape” of the polymer the total bending energy of the
polymer is ǫ times the number of right angle turns. We assume
that the starting segment of the polymer is fixed somewhere on
the lattice and that the polymer consists of N +1 segments. Each
possible shape of the polymer is a state of this statistical mechan-
ics system.

2

1

3

a) How many polymer shapes have a total bending energy E where we assume E = mǫ
with some integer 0 ≤ m ≤ N? (Hint: First count how many ways there are to position
the m right angles on the polymer of length N +1 segments and then take into account
that there are 2 possible choices for each right angle, namely left and right.)

b) What is the entropy S(E,N) of this system? Approximate all factorials with the help
of Stirling’s formula.

c) Calculate the temperature of this system as a function of the total bending energy E
and the length N of the polymer.

d) Calculate the energy E of the polymer as a function of the temperature T and of the
length N of the polymer.

e) Calculate the heat capacity at constant length CN as a function of the temperature T
and the length N of the polymer.
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4. Two-state system 8 points

A (very small) discrete system has only two states 1 and 2 with energies E1 = −ε0 and
E2 = ε0, respectively. This could, e.g., be a spin 1/2 particle in an external magnetic field.
Since this system contains only one particle, the different thermodynamic ensembles do not

provide equivalent descriptions of the physics. We want to explore this difference for this
simplest possible system.

a) If the system is isolated from the environment which are the possible values for the
internal energy of the system?

b) In the following we assume that the system is not isolated any more but instead inter-
acting with a heat bath of temperature T . What are the probabilities pi to find the
system in each of the two states in this case.

c) Calculate the internal energy as a function of the temperature of the heat bath.

d) Which are the possible values for the internal energy of the system when coupled to the
heat bath? Consider the limiting values of the expression you calculated in c).

5. A polymer on the lattice - canonical 10 points

In order to compare the different ensembles we want to study
the two dimensional polymer from problem 3 in the canconical
ensemble. Again, we model the polymer as a path on a square
lattice. At every lattice point the polymer can either go straight
(option 1 in the figure) or choose between the two directions in
a right angle with respect to its current direction (options 2 and
3 in the figure.) Each time it bends in a right angle, it pays a
bending energy ǫ. If it goes straight the energy contribution of the
respective joint is zero. Thus, for a given “shape” of the polymer
the total bending energy of the polymer is ǫ times the number of
right angle turns. We assume that the starting segment of the
polymer is fixed somewhere on the lattice and that the polymer
consists of N + 1 segments. Each possible shape of the polymer
is a state of this statistical mechanics system.
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a) Calculate the partition function of this polymer as a function of temperature T and the
number of joints N of the polymer.

b) Calculate the average internal energy U of this polymer as a function of temperature T
and the number of joints N of the polymer.

c) Compare your result in b) with the result from problem 3d).

6. Barometric formula 10 points

We want to derive how the air pressure depends on the height above sea level. To make things
simple we pretend that air consists of only one type of molecules of mass m. We consider a
volume of gas over an area of size A at sea level. The z-coordinate of the molecules has to be
positive (i.e., above sea level) but is otherwise unconstrained. There are N molecules in this
volume. The energy of the gas is given by

H(~xN) =











N
∑

i=1

[

~p2

i

2m
+ mgzi

]

all zi ≥ 0 and (xi, yi) within area A

+∞ otherwise
,

where ~ri = (xi, yi, zi) are the coordinates of molecule i.

a) Calculate the partition function Z(T ) of the gas.

b) The probability density ρ(~r) to find some particle of the gas at position ~r is given by

ρ(~r) =
∫

d~xNρ(~xN)δ(~r1 − ~r)

where ~r1 is the position of particle 1. Calculate this probability density by performing
the integral.

c) Use the law of large numbers and the ideal gas law PV = NkBT applied to the volume
V = A∆z for a small height slice of thickness ∆z in order to relate the probability
density ρ(~r) to the pressure P (z) at height z.
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7. Ultra-relativistic gas 12 points

If the particles of a gas have velocities close to the speed of light c, their energy has to be
calculated relativistically. In the limit of massless particles (e.g., photons) which travel at the
speed of light, this relation between the momentum ~pi of particle i and its energy Ei becomes
Ei = c|~pi|. Thus, the energy of a gas of N of these particles in a box of volume V is

H(~xN) =











c
N
∑

i=1
|~pi| all ~ri inside volume V

+∞ otherwise
.

a) Calculate the partition function of such an ultra-relativistic gas. (Hint:
∞
∫

0
x2 exp(−x)dx =

Γ(3) = 2.)

b) Calculate the free energy of the ultra-relativistic gas as a function of its natural variables
temperature T , volume V , and number of particles N . Use Stirling’s formula to express
your result in an explicitely extensive form.

c) Derive the equation of state (i.e., the relation between pressure P , volume V , tempera-
ture T , and number of particles N) of the ultra-relativistic gas.

d) Express the internal energy U of the ultra-relativistic gas in terms of the temperature
T and the number of particles N .

8. Rubber elasticity 12 points

As a simple model of an elastic string like, e.g., a rubber band, we consider a linear chain of N
building blocks. Each building block can be in two different states a or b. In these states the
building blocks have length la, and lb and energies εa and εb, respectively. The total length of
the chain is L = Nala + Nblb and the total energy of the string by itself is E0 = Naεa + Nbεb

where Na = N −Nb is the number of building blocks in state a. The string is streched by an
external force f which turns the total energy of a state into E = E0 − Lf .
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a) Calculate the partition function of this string as a function of temperature T , the number
of building blocks N , and the external force f . Introduce variables ni ∈ {a, b} that
describe in which state building block i is and write the partition function as a sum over
these variables ni.

b) Calculate the average internal energy U of this string as a function of temperature T ,
the number of building blocks N , and the external force f .

c) Calculate the expected length 〈L〉 of this string as a function of temperature T , the
number of building blocks N , and the external force f . (Hint: The expected length is
a similar quantity as the expected energy. Find an expression for the expected length
through a derivative similar to the derivative which we use to calculate the average
internal energy.) What is the expected length at zero force in the case εa = εb? Why?

9. Relative momentum 10 points

We calculated in the lecture the distribution of velocities of the molecules of an ideal gas. In
addition we would like to know how the relative momentum of two particles of the ideal gas
is distributed. We concentrate on the absolut value pr ≡ |~pi − ~pj| of this relative momentum.
Calculate the probability density PPr

(p) of p in an ideal gas. (Hint: at some point you are left
with an integral over the momenta of two different particles. It is is useful to transform this
integral to a “center of mass” and a “relative” momentum in the same way as this is done in
classical mechanics for coordinates, i.e., ~P = (~pi + ~pj)/2 and ~p = ~pi − ~pj.)
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10. A two-dimensional solid 10 points

Consider a two-dimensional lattice in the x-y-plane with sides of length Lx and Ly which
contains N atoms (N very large) coupled by nearest-neighbor harmonic forces.

a) Compute the Debeye frequency for this lattice. Note, that although the atoms are in
a two-dimensional lattice they can still oscillate in three space directions. However, in
a planar solid, there are three sound velocities: one transversal within the plane of the
solid, one transversal out of the plane of the solid, and one logitudinal.

b) Calculate the heat capacity of this solid. You may use the results from the lecture that
are independent of the dimension of the solid without rederiving them.

c) What is the asymptotic behavior of the heat capacity for very large temperatures?

d) What is the asymptotic behavior of the heat capacity for very small temperatures?

(Hint:
∞
∫

0
dxx3 exp(x)

(exp(x)−1)2
= 6ζ(3).)

11. Rotational degrees of freedom 10 points

Hydrogen molecules can exists in two forms: ortho- and para-hydrogen.

a) The two electrons of H2 in para-hydrogen form a singlet (antisymmetric) state. The

orbital angular momentum can thus only take even values Ep = h̄2

2I
L(L + 1), where

L = 0, 2, 4, . . .. Write down the rotational partition function of a single para-hydrogen.
You will not be able to actually perform the sum which you get.

b) In ortho-hydrogen, the electrons are in triply degenerate states, hence Eo = h̄2

2I
L(L+1),

where L = 1, 3, 5, . . .. Write down the rotational partition function of a single ortho-
hydrogen. Do not forget the factor of three representing the degeneracy of the electronic
states.

c) For an equilibrium gas of N hydrogen molecules (which contains both para- and ortho-
hydrogen), calculate the total partition function coming from the rotational degrees of
freedom. (Hint: Sum over contributions from mixtures of Np para- and No = N − Np

ortho-hydrogen particles.)
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d) Write down the expression for the rotational contribution to the internal energy 〈Erot〉,
and discuss its low and high temperature limits. (Hint: at high temperatures you can
replace the sum by an integral but you should say why.)

12. DNA denaturation 12 points

DNA is a long molecule consisting of N units called “bases”. The natural state of a DNA
molecule in a cell is a configuration in which two of these DNA molecules are bound together
base by base, i.e., base 1 of the first molecule is bound to base 1 of the second molecule, base
2 of the first molecule is bound to base 2 of the second molecule and so on. In this state
the DNA takes on its well-known double helical structure. Chemical differences between the
bases prevent the bases at different positions to bind to each other. If temperature rises these
bindings can break up. We want to describe this process. To this end, we assign a variable
si, i ∈ {1, . . . , N} to each of the N bases of one of the molecules. si can take the values 0
and 1. si = 1 means that the base is bound to its partner base in the other molecule; si = 0
means that the base is unbound. There are two energetic contributions in this system: A
bound pair of bases gains a binding energy ε0. In addition, there is an energy gain of εs

whenever two neighboring bases are bound. The latter results from a favorable interaction
between neighboring bases of the same molecule which can occur only if both bases are bound
to the corresponding bases in the other molecule. The total binding energy of a configuration
(s1, . . . , sN) is

H(s1, . . . , sN) = −ε0

N
∑

i=1

si − εs

N
∑

i=1

sisi+1.

We assume that the DNA molecule is closed to a ring, i.e., that sN+1 = s1 (this is indeed the
case for bacterial genomes.)

a) Calculate the partition function of this system in the limit of very long molecules.

b) Calculate the fraction of bound bases. Since the number of bound bases in a given
configuration is given by

∑N
i=1 si, the fraction of bound bases is 〈

∑N
i=1 si〉/N = 〈s1〉

where the equality is due to the translational invariance. Since in reality ε0 ≪ εs, we
can set ε0 = 0 in the result.

c) Calculate the heat capacity of such a pair of DNA molecules at ε0 = 0.

d) Plot the fraction of bound bases and the heat capacity as functions of dimensionless
temperature kBT/εs at ε0 = 0.
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13. Spin correlations 8 points

Consider a one-dimensional lattice with N lattice sites and assume that the ith lattice site
has spin si = ±1. The Hamiltonian describing this lattice is H = −ε

∑N
i=1 sisi+1. Assume

periodic boundary conditions, so sN+1 ≡ s1. Compute the correlation function 〈s1s2〉. How
does it behave at very high temperature and at very low temperature?

14. Spin 1 magnet 12 points

Consider a lattice of N spins si which can take values si ∈ {−1, 0, 1}. In the absence of an
external magnetic field the energy of this system is given by

H = −ε
∑

{i,j}

sisj.

Apply the mean field approximation to this system. Denote the number of nearest neighbors
of a spin by ν.

a) At which temperature Tc does the system have a phase transition?

b) How does the magnetization behave at T > Tc, at T → 0, and at T ≈ Tc but T < Tc

c) Calculate the heat capacity in the three temperature regimes given in b).

15. Ideal gas — grand canonical ensemble 12 points

As the simplest example for the grand canonical ensemble, we want to study the ideal gas
again. The energy of an ideal gas is given by

H(N,~xN) =
N

∑

j=1

~p2
j

2m
.

a) Calculate the grand canonical partition function of the ideal gas.

b) Calculate the grand canonical potential of the ideal gas as a function of temperature T ,
volume V , and chemical potential µ′.
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c) Verify the ideal gas law PV = NkBT by taking appropriate derivatives of the grand
canonical potential. (Hint: P and N are given by one derivative each.)

d) Calculate 〈N 2〉 − 〈N〉2 by taking a suitable derivative of the grand canonical potential.

Express the relative fluctuation
√

〈N 2〉 − 〈N〉2/N of the number of particles as a func-
tion of temperature T , volume V , and the number of particles N . How large is this
relative fluctuations for 1 mole (6 · 1023) of particles?
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16. Adsorption to a surface 10 points

Consider a solid surface to be a two-dimensional lattice with M sites. Each site can be either
empty or occupied with a single adsorbed atom. An adsorbed atom has a binding energy −ε
and we neglect any interactions between the atoms.

a) Calculate the grand canonical partition function of the adsorbed atoms as a function of
temperature T , lattice size M , and chemical potential µ′. Use variables ni ∈ {0, 1} for
each i = 1, . . . ,M to describe if site i is empty or occupied.

b) Calculate the grand canonical potential of the adsorbed atoms as a function of temper-
ature T , lattice size M , and chemical potential µ′.

c) Calculate the average number of adsorbed atoms N as a function of temperature T ,
lattice size M , and chemical potential µ′.

d) The surface is exposed to an ideal gas of the atoms at some pressure P and the same
temperature T as the surface. Calculate the fraction N/M of adsorbed atoms as a
function of the pressure P of the ideal gas and the temperature T of the system. (Hint:
in thermodynamic equilibrium the chemical potentials of the adsorbed atoms and the
atoms in the ideal gas have to be equal.)

17. Density operator 10 points

a) In a two-dimensional Hilbert space an operator ρ̂ is given by the matrix

ρ̂ =
1

2

(

1 + a1 a2

a3 1 − a1

)

.

Determine for which values of the three complex parameters a1, a2, and a3 this operator
is a density operator. For which values of the three parameters is it a pure state?

b) Prove that for a hermitian Hamiltonian Ĥ the operator ρ̂ ≡ e−βĤ/tr e−βĤ is a density
operator.
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18. Spin 1 atom 12 points

An atom with spin 1 has a Hamiltonian Ĥ = AŜ2

z +B(Ŝ2

x − Ŝ2

y), where Ŝx, Ŝy, and Ŝz are the
x, y, and z component of the spin angular momentum operator. In the basis of eigenstates
of the operator Ŝz these three operators have the matrix representations

Ŝz = h̄







1 0 0
0 0 0
0 0 −1





 , Ŝx =
h̄√
2







0 1 0
1 0 1
0 1 0





 , and Ŝy =
h̄

i
√

2







0 1 0
−1 0 1
0 −1 0





 .

At time t = 0 the atom is initially in an eigenstate of Ŝz with eigenvalue +h̄.

a) Write the density matrix (in the basis of eigenstates of Ŝz) at t = 0.

b) Compute the density matrix at time t in the basis of eigenstates of Ŝz.

c) Compute the average z component of the spin at time t.

19. Extremality of density operators I 12 points

We want to look in more detail in which sense the density operators of the canonical and
grand canonical ensemble maximize the entropy. To this end we want to prove the identity

Trρ̂1(ln ρ̂2 − ln ρ̂1) ≤ 0 (1)

for any pair of density operators ρ1 and ρ2. In the next problem we apply this identity to the
canonical and the grand canonical density operators.

a) Use the Cauchy-Schwarz inequality applied to the scalar product 〈Â, B̂〉 ≡ TrAB† in

order to prove Trρ̂
1/2

1 ρ̂
1/2

2 ≤ 1. A fractional power of an operator is defined by Âx ≡
exp(x ln Â) where exp and ln are defined by their power series.

b) Use induction on n in order to prove

Tr(ρ̂1−2
−n

1
ρ̂2

−n

2
) ≤ 1

for any integer n ≥ 1. (Hint: Rewrite ρ̂1−2
−n

1 ρ̂2
−n

2
= ρ̂

1/2

1 (ρ̂
1/2−2

−n

1 ρ̂2
−n

2
) and use the

Cauchy-Schwarz inequality again.)
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c) Take the limit n → ∞ in order to prove the identity (1).

20. Extremality of density operators II 8 points

Now, we want to use Eq. (1) in order to see in which sense the density operators of the
canonical and grand canonical ensemble maximize the entropy.

a) Let ρ̂2 be the density operator of the canonical ensemble and ρ̂1 be an arbitrary density
operator. Define E ≡ Trρ̂2Ĥ, E ′ ≡ Trρ̂1Ĥ, S ≡ −kBTrρ̂2 ln ρ̂2, and S ′ ≡ −kBTrρ̂1 ln ρ̂1.
Show that

S ≥ S ′ +
1

T
(E − E ′).

b) Let ρ̂2 be the density operator of the grand canonical ensemble and ρ̂1 be an arbitrary
density operator. Define E ≡ Trρ̂2Ĥ, E ′ ≡ Trρ̂1Ĥ, N ≡ Trρ̂2N̂ , N ′ ≡ Trρ̂1N̂ , S ≡
−kBTrρ̂2 ln ρ̂2, and S ′ ≡ −kBTrρ̂1 ln ρ̂1. Show that

S ≥ S ′ +
1

T
[E − E ′ − µ′(N − N ′)].

2



Department of Physics Prof. R. Bundschuh
The Ohio State University

Eighth Problem Set for Physics 847 (Statistical Physics II)

Winter quarter 2004

Important date: Mar 16 9:30am-11:18am final exam

Due date: Tuesday, Mar 2

21. Density operator of a free particle 10 points

A free particle is described by the Hamiltonian Ĥ = ~̂p
2

/2m. We assume that the particle is
in a cubic box of volume V = L3.

a) Write the canonical density operator in the momentum base |~k〉, i.e., calculate 〈~k′|ρ̂|~k〉.
When calculating the partition function you may replace the sum by an integral.

b) Write the canonical density operator in the coordinate base |~r〉, i.e., calculate 〈~r ′|ρ̂|~r〉.

You may again replace sums by integrals. (Hint: use 〈~k|~r〉 = V −1/2 exp(−i~k~r).)

22. Single energy level 10 points

We consider one energy level of a large quantum system as the subsystem which we want
to describe while we summarize all the other levels of the system as the particle bath. The
single particle energy of the level we picked is ε. Since there is only one level, the state of our
subsystem is completely described by the kets |n〉 where n is the number of particles in our
level. Since this number is not fixed, we use the grand canonical ensemble to describe this
system.

a) Calculate the probability pn = 〈n|ρ̂|n〉 to find n particles in the system as a function of
inverse temperature β, the level energy ε, and the fugacity z = exp(βµ′) for a bosonic
system.

b) Calculate the average number of particles Trρ̂N̂ in the system as a function of inverse
temperature β, the level energy ε, and the fugacity z = exp(βµ′) for a bosonic system.

c) Calculate the probability pn = 〈n|ρ̂|n〉 to find n particles in the system as a function of
inverse temperature β, the level energy ε, and the fugacity z = exp(βµ′) for a fermionic
system.

d) Calculate the average number of particles Trρ̂N̂ in the system as a function of inverse
temperature β, the level energy ε, and the fugacity z = exp(βµ′) for a fermionic system.

1



23. Two harmonic oscillators 10 points

Consider two indistinguishable particles inside a harmonic oscillator with frequency ω. The
eigenenergies of a single particle in this oscillator are En = h̄ω(n + 1/2) and we call the
normalized eigenvector of the n-th eigenenergy |n〉.

a) Calculate the canonical partition function of two particles in this oscillator treating it
as a classical system with discrete states.

b) Calculate the canonical partition function of two particles in this oscillator assuming
that the two particles are bosons.

c) Calculate the canonical partition function of two particles in this oscillator assuming
that the two particles are fermions.
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24. Two-level bosons 8 points

An ideal Bose-Einstein gas consists of non-interacting bosons of mass m which have an internal
degree of freedom which can be described by assuming, that the bosons are two-level atoms.
Bosons in the ground state have energy E0 = p2/2m, while bosons in the excited state have
energy E1 = p2/2m + ∆, where p is the momentum and ∆ is the excitation energy. Assume
that ∆ ≫ kBT .

a) Find an equation for the Bose-Einstein condensation temperature Tc for this gas of two-
level bosons. (Hint: this equation may not be so easy to actually solve since it involves
Tc and exp(−β∆) = exp(−∆/kBTc) at the same time.)

b) Does the existence of the internal degree of freedom raise or lower the condensation
temperature?

25. Fermi energy of copper 6 points

Electrons in a piece of copper metal can be assumed to behave like an ideal Fermi-Dirac gas.
Copper metal in the solid state has a mass density of 9g/cm3. Assume that each copper atom
donates one electron to the Fermi-Dirac gas. Assume the system is at T = 0K.

a) Compute the Fermi energy εF of the electron gas in eV .

b) Compute the Fermi “temperature” TF = εF /kB.

26. Two-dimensional Fermi gas 10 points

It is experimentally possible to confine electrons to a two-dimensional system. Thus, we want
to study the properties of non-interacting spin-1/2 fermions in two dimensions. The fermions
have mass m and are confined to a square of area A = L2.

a) Calculate the density of states of this system.

b) Calculate the Fermi energy of the system as a function of the density n = N/A of the
fermions. Use this result to replace the fundamental constants in the density of states
by the Fermi energy.

c) Show that for low temperatures the chemical potential µ′ is independent of temperature.

d) Calculate the internal energy U of the system as a function of the temperature T and
the Fermi energy εF for low temperatures.
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1. Review 10 points

Let us start by reviewing some of the key concepts from the first statistical mechanics course.

a) What are the three laws of thermodynamics?

b) What is special about the entropy in thermodynamic equilibrium compared to all other
possible states of a system?

c) What is a thermodynamic phase transition and what is the difference between a first-
order and a continuous phase transition?

d) What is the relation between the entropy of a macroscopic state and the number of
microscopic states which correspond to the macroscopic state?

e) What is the probability distribution of the microcanonical ensemble? What physical
situation does it correspond to?

2. Harmonic oscillators 10 points

Let us consider an Einstein solid and look at it from a classical point of view. The Einstein
solid picture assumes that atom i of a solid sits at lattice position ~r0,i and can oscillate
harmonically around this position. It is described by the Hamiltonian

H =
N

∑

i=1

~p2

i

2m
+

1

2
mω2

N
∑

i=1

(~ri − ~r0,i)
2.

a) What shape does the phase space volume with energy less than E, i.e., the volume
H(~xN) ≤ E have?

b) Calculate the entropy S of the Einstein solid at a given energy E using classical theory.
When you evaluate the constant CN take into account, that the oscillators have different
origins and thus the atoms are distinguishable!

c) In what limit does your result coincide with the quantum mechanical result derived
in last quarter’s lecture? (You can find last quarter’s lecture on the Einstein solid at
http://cannoli.mps.ohio-state.edu/phy846/phy846-14.pdf)
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d) What would the entropy be, if we had a gas of N particles within the same harmonic
oscillator, i.e., if ~r0,i = 0 for all i. Is this entropy an extensive quantity? (Hint: You
have to use a different constant CN .)

3. A polymer on the lattice - microcanonical 10 points

To appreciate the differences between the microcanonical and the
canonical ensemble we want to solve one more problem in the
microcanonical ensemble. A simple model for a polymer in two
dimensions is that of a path on a square lattice. At every lattice
point the polymer can either go straight (option 1 in the figure)
or choose between the two directions in a right angle with respect
to its current direction (options 2 and 3 in the figure.) Each time
it bends in a right angle, it pays a bending energy ǫ. Thus, for
a given “shape” of the polymer the total bending energy of the
polymer is ǫ times the number of right angle turns. We assume
that the starting segment of the polymer is fixed somewhere on
the lattice and that the polymer consists of N +1 segments. Each
possible shape of the polymer is a state of this statistical mechan-
ics system.
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a) How many polymer shapes have a total bending energy E where we assume E = mǫ
with some integer 0 ≤ m ≤ N? (Hint: First count how many ways there are to position
the m right angles on the polymer of length N +1 segments and then take into account
that there are 2 possible choices for each right angle, namely left and right.)

b) What is the entropy S(E,N) of this system? Approximate all factorials with the help
of Stirling’s formula.

c) Calculate the temperature of this system as a function of the total bending energy E
and the length N of the polymer.

d) Calculate the energy E of the polymer as a function of the temperature T and of the
length N of the polymer.

e) Calculate the heat capacity at constant length CN as a function of the temperature T
and the length N of the polymer.
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